FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.43

Version History

The Forsyth Institute, Cambridge, MA, USA
October 09, 2023

Project ID: 20231003_dada2_trim


I. Project Summary

Project 20231003_dada2_trim services include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report, as well as the sequence raw data from the download links provided below. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested. We provide many analyses, starting from the raw sequence quality and noise filtering, pair reads merging, as well as chimera filtering for the sequences, using the DADA2 denosing algorithm and pipeline.

We also provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

The samples were processed and analyzed with the ZymoBIOMICS® Service: Targeted Metagenomic Sequencing (Zymo Research, Irvine, CA).

DNA Extraction: If DNA extraction was performed, one of three different DNA extraction kits was used depending on the sample type and sample volume and were used according to the manufacturer’s instructions, unless otherwise stated. The kit used in this project is marked below:

ZymoBIOMICS® DNA Miniprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS® DNA Microprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA)
N/A (DNA Extraction Not Performed)
Elution Volume: 50µL
Additional Notes: NA

Targeted Library Preparation: The DNA samples were prepared for targeted sequencing with the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA). These primers were custom designed by Zymo Research to provide the best coverage of the 16S gene while maintaining high sensitivity. The primer sets used in this project are marked below:

Quick-16S™ Primer Set V1-V2 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V1-V3 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V3-V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V6-V8 (Zymo Research, Irvine, CA)
Other: NA
Additional Notes: NA

The sequencing library was prepared using an innovative library preparation process in which PCR reactions were performed in real-time PCR machines to control cycles and therefore limit PCR chimera formation. The final PCR products were quantified with qPCR fluorescence readings and pooled together based on equal molarity. The final pooled library was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research, Irvine, CA), then quantified with TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher Scientific, Waltham, WA).

Control Samples: The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control for each DNA extraction, if performed. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each targeted library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

Sequencing: The final library was sequenced on Illumina® MiSeq™ with a V3 reagent kit (600 cycles). The sequencing was performed with 10% PhiX spike-in.

Absolute Abundance Quantification*: A quantitative real-time PCR was set up with a standard curve. The standard curve was made with plasmid DNA containing one copy of the 16S gene and one copy of the fungal ITS2 region prepared in 10-fold serial dilutions. The primers used were the same as those used in Targeted Library Preparation. The equation generated by the plasmid DNA standard curve was used to calculate the number of gene copies in the reaction for each sample. The PCR input volume (2 µl) was used to calculate the number of gene copies per microliter in each DNA sample.
The number of genome copies per microliter DNA sample was calculated by dividing the gene copy number by an assumed number of gene copies per genome. The value used for 16S copies per genome is 4. The value used for ITS copies per genome is 200. The amount of DNA per microliter DNA sample was calculated using an assumed genome size of 4.64 x 106 bp, the genome size of Escherichia coli, for 16S samples, or an assumed genome size of 1.20 x 107 bp, the genome size of Saccharomyces cerevisiae, for ITS samples. This calculation is shown below:

Calculated Total DNA = Calculated Total Genome Copies × Assumed Genome Size (4.64 × 106 bp) ×
Average Molecular Weight of a DNA bp (660 g/mole/bp) ÷ Avogadro’s Number (6.022 x 1023/mole)


* Absolute Abundance Quantification is only available for 16S and ITS analyses.

The absolute abundance standard curve data can be viewed in Excel here:

The absolute abundance standard curve is shown below:

Absolute Abundance Standard Curve

 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:
1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

The raw NGS sequence data is available for download with the link provided below. The data is a compressed ZIP file and can be unzipped to individual sequence files. Since this is a pair-end sequencing, each of your samples is represented by two sequence files, one for READ 1, with the file extension “*_R1.fastq.gz”, another READ 2, with the file extension “*_R1.fastq.gz”. The files are in FASTQ format and are compressed. FASTQ format is a text-based data format for storing both a biological sequence and its corresponding quality scores. Most sequence analysis software will be able to open them. The Sample IDs associated with the R1 and R2 fastq files are listed in the table below:

Sample IDOriginal Sample IDRead 1 File NameRead 2 File Name
F12829.S10original sample ID herezr12829_10V1V3_R1.fastq.gzzr12829_10V1V3_R2.fastq.gz
F12829.S11original sample ID herezr12829_11V1V3_R1.fastq.gzzr12829_11V1V3_R2.fastq.gz
F12829.S12original sample ID herezr12829_12V1V3_R1.fastq.gzzr12829_12V1V3_R2.fastq.gz
F12829.S13original sample ID herezr12829_13V1V3_R1.fastq.gzzr12829_13V1V3_R2.fastq.gz
F12829.S14original sample ID herezr12829_14V1V3_R1.fastq.gzzr12829_14V1V3_R2.fastq.gz
F12829.S15original sample ID herezr12829_15V1V3_R1.fastq.gzzr12829_15V1V3_R2.fastq.gz
F12829.S16original sample ID herezr12829_16V1V3_R1.fastq.gzzr12829_16V1V3_R2.fastq.gz
F12829.S17original sample ID herezr12829_17V1V3_R1.fastq.gzzr12829_17V1V3_R2.fastq.gz
F12829.S18original sample ID herezr12829_18V1V3_R1.fastq.gzzr12829_18V1V3_R2.fastq.gz
F12829.S19original sample ID herezr12829_19V1V3_R1.fastq.gzzr12829_19V1V3_R2.fastq.gz
F12829.S01original sample ID herezr12829_1V1V3_R1.fastq.gzzr12829_1V1V3_R2.fastq.gz
F12829.S20original sample ID herezr12829_20V1V3_R1.fastq.gzzr12829_20V1V3_R2.fastq.gz
F12829.S21original sample ID herezr12829_21V1V3_R1.fastq.gzzr12829_21V1V3_R2.fastq.gz
F12829.S22original sample ID herezr12829_22V1V3_R1.fastq.gzzr12829_22V1V3_R2.fastq.gz
F12829.S23original sample ID herezr12829_23V1V3_R1.fastq.gzzr12829_23V1V3_R2.fastq.gz
F12829.S24original sample ID herezr12829_24V1V3_R1.fastq.gzzr12829_24V1V3_R2.fastq.gz
F12829.S25original sample ID herezr12829_25V1V3_R1.fastq.gzzr12829_25V1V3_R2.fastq.gz
F12829.S26original sample ID herezr12829_26V1V3_R1.fastq.gzzr12829_26V1V3_R2.fastq.gz
F12829.S27original sample ID herezr12829_27V1V3_R1.fastq.gzzr12829_27V1V3_R2.fastq.gz
F12829.S28original sample ID herezr12829_28V1V3_R1.fastq.gzzr12829_28V1V3_R2.fastq.gz
F12829.S29original sample ID herezr12829_29V1V3_R1.fastq.gzzr12829_29V1V3_R2.fastq.gz
F12829.S02original sample ID herezr12829_2V1V3_R1.fastq.gzzr12829_2V1V3_R2.fastq.gz
F12829.S30original sample ID herezr12829_30V1V3_R1.fastq.gzzr12829_30V1V3_R2.fastq.gz
F12829.S31original sample ID herezr12829_31V1V3_R1.fastq.gzzr12829_31V1V3_R2.fastq.gz
F12829.S32original sample ID herezr12829_32V1V3_R1.fastq.gzzr12829_32V1V3_R2.fastq.gz
F12829.S33original sample ID herezr12829_33V1V3_R1.fastq.gzzr12829_33V1V3_R2.fastq.gz
F12829.S34original sample ID herezr12829_34V1V3_R1.fastq.gzzr12829_34V1V3_R2.fastq.gz
F12829.S35original sample ID herezr12829_35V1V3_R1.fastq.gzzr12829_35V1V3_R2.fastq.gz
F12829.S36original sample ID herezr12829_36V1V3_R1.fastq.gzzr12829_36V1V3_R2.fastq.gz
F12829.S03original sample ID herezr12829_3V1V3_R1.fastq.gzzr12829_3V1V3_R2.fastq.gz
F12829.S04original sample ID herezr12829_4V1V3_R1.fastq.gzzr12829_4V1V3_R2.fastq.gz
F12829.S05original sample ID herezr12829_5V1V3_R1.fastq.gzzr12829_5V1V3_R2.fastq.gz
F12829.S06original sample ID herezr12829_6V1V3_R1.fastq.gzzr12829_6V1V3_R2.fastq.gz
F12829.S07original sample ID herezr12829_7V1V3_R1.fastq.gzzr12829_7V1V3_R2.fastq.gz
F12829.S08original sample ID herezr12829_8V1V3_R1.fastq.gzzr12829_8V1V3_R2.fastq.gz
F12829.S09original sample ID herezr12829_9V1V3_R1.fastq.gzzr12829_9V1V3_R2.fastq.gz

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Raw sequence data download link:

 

VI. Analysis - DADA2 Read Processing

What is DADA2?

DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. DADA2 identified more real variants and output fewer spurious sequences than other methods.

DADA2’s advantage is that it uses more of the data. The DADA2 error model incorporates quality information, which is ignored by all other methods after filtering. The DADA2 error model incorporates quantitative abundances, whereas most other methods use abundance ranks if they use abundance at all. The DADA2 error model identifies the differences between sequences, eg. A->C, whereas other methods merely count the mismatches. DADA2 can parameterize its error model from the data itself, rather than relying on previous datasets that may or may not reflect the PCR and sequencing protocols used in your study.

DADA2 Publication: Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

DADA2 Software Package is available as an R package at : https://benjjneb.github.io/dada2/index.html

Analysis Procedures:

DADA2 pipeline includes several tools for read quality control, including quality filtering, trimming, denoising, pair merging and chimera filtering. Below are the major processing steps of DADA2:

Step 1. Read trimming based on sequence quality The quality of NGS Illumina sequences often decreases toward the end of the reads. DADA2 allows to trim off the poor quality read ends in order to improve the error model building and pair mergicing performance.

Step 2. Learn the Error Rates The DADA2 algorithm makes use of a parametric error model (err) and every amplicon dataset has a different set of error rates. The learnErrors method learns this error model from the data, by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution. As in many machine-learning problems, the algorithm must begin with an initial guess, for which the maximum possible error rates in this data are used (the error rates if only the most abundant sequence is correct and all the rest are errors).

Step 3. Infer amplicon sequence variants (ASVs) based on the error model built in previous step. This step is also called sequence "denoising". The outcome of this step is a list of ASVs that are the equivalent of oligonucleotides.

Step 4. Merge paired reads. If the sequencing products are read pairs, DADA2 will merge the R1 and R2 ASVs into single sequences. Merging is performed by aligning the denoised forward reads with the reverse-complement of the corresponding denoised reverse reads, and then constructing the merged “contig” sequences. By default, merged sequences are only output if the forward and reverse reads overlap by at least 12 bases, and are identical to each other in the overlap region (but these conditions can be changed via function arguments).

Step 5. Remove chimera. The core dada method corrects substitution and indel errors, but chimeras remain. Fortunately, the accuracy of sequence variants after denoising makes identifying chimeric ASVs simpler than when dealing with fuzzy OTUs. Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant “parent” sequences. The frequency of chimeric sequences varies substantially from dataset to dataset, and depends on on factors including experimental procedures and sample complexity.

Results

1. Read Quality Plots NGS sequence analaysis starts with visualizing the quality of the sequencing. Below are the quality plots of the first sample for the R1 and R2 reads separately. In gray-scale is a heat map of the frequency of each quality score at each base position. The mean quality score at each position is shown by the green line, and the quartiles of the quality score distribution by the orange lines. The forward reads are usually of better quality. It is a common practice to trim the last few nucleotides to avoid less well-controlled errors that can arise there. The trimming affects the downstream steps including error model building, merging and chimera calling. FOMC uses an empirical approach to test many combinations of different trim length in order to achieve best final amplicon sequence variants (ASVs), see the next section “Optimal trim length for ASVs”.

Quality plots for all samples:

2. Optimal trim length for ASVs The final number of merged and chimera-filtered ASVs depends on the quality filtering (hence trimming) in the very beginning of the DADA2 pipeline. In order to achieve highest number of ASVs, an empirical approach was used -

  1. Create a random subset of each sample consisting of 5,000 R1 and 5,000 R2 (to reduce computation time)
  2. Trim 10 bases at a time from the ends of both R1 and R2 up to 50 bases
  3. For each combination of trimmed length (e.g., 300x300, 300x290, 290x290 etc), the trimmed reads are subject to the entire DADA2 pipeline for chimera-filtered merged ASVs
  4. The combination with highest percentage of the input reads becoming final ASVs is selected for the complete set of data

Below is the result of such operation, showing ASV percentages of total reads for all trimming combinations (1st Column = R1 lengths in bases; 1st Row = R2 lengths in bases):

R1/R2281271261251241231
32165.99%66.44%66.90%67.41%63.61%56.88%
31166.32%66.78%67.27%63.36%55.06%38.76%
30166.30%66.78%62.80%54.41%37.23%19.88%
29166.31%62.38%53.89%36.65%19.13%9.72%
28162.19%53.67%36.50%18.75%9.35%7.27%
27153.42%36.66%18.76%8.99%6.97%2.12%

Based on the above result, the trim length combination of R1 = 321 bases and R2 = 251 bases (highlighted red above), was chosen for generating final ASVs for all sequences. This combination generated highest number of merged non-chimeric ASVs and was used for downstream analyses, if requested.

3. Error plots from learning the error rates After DADA2 building the error model for the set of data, it is always worthwhile, as a sanity check if nothing else, to visualize the estimated error rates. The error rates for each possible transition (A→C, A→G, …) are shown below. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal definition of the Q-score. The ideal result would be the estimated error rates (black line) are a good fit to the observed rates (points), and the error rates drop with increased quality as expected.

Forward Read R1 Error Plot


Reverse Read R2 Error Plot

The PDF version of these plots are available here:

 

4. DADA2 Result Summary The table below shows the summary of the DADA2 analysis, tracking paired read counts of each samples for all the steps during DADA2 denoising process - including end-trimming (filtered), denoising (denoisedF, denoisedF), pair merging (merged) and chimera removal (nonchim).

Sample IDF12829.S01F12829.S02F12829.S03F12829.S04F12829.S05F12829.S06F12829.S07F12829.S08F12829.S09F12829.S10F12829.S11F12829.S12F12829.S13F12829.S14F12829.S15F12829.S16F12829.S17F12829.S18F12829.S19F12829.S20F12829.S21F12829.S22F12829.S23F12829.S24F12829.S25F12829.S26F12829.S27F12829.S28F12829.S29F12829.S30F12829.S31F12829.S32F12829.S33F12829.S34F12829.S35F12829.S36Row SumPercentage
input149,561142,276145,265146,982152,122122,929209,765247,101216,437172,726168,829157,995188,652161,054158,976161,480164,988153,076183,077265,336249,126189,466142,667188,331149,564152,305135,151139,725135,302190,298198,710294,636258,515157,279127,909140,0666,317,677100.00%
filtered118,837112,689115,822115,454120,83597,144166,389196,109171,583136,623133,853124,580149,465127,972125,623127,933130,775120,859144,872210,326196,456149,541113,016149,394118,949120,516107,168110,144106,551150,951157,669234,027203,872124,390101,192110,5825,002,16179.18%
denoisedF117,684111,516114,606114,796119,85796,343166,101195,501171,059136,258133,404124,272147,867126,666124,148127,050129,925120,042144,547209,476195,907148,902112,533148,986117,586119,178105,881109,434105,786149,890157,407232,134203,321123,868100,895110,1694,972,99578.72%
denoisedR116,252110,386113,351113,487118,51095,219164,359193,247169,334134,731132,126122,966146,633125,622123,005125,589128,705118,781143,171207,918194,056147,572111,447147,413116,398117,883104,893108,130104,626148,514155,966231,003201,220122,92899,750108,9164,924,10777.94%
merged109,929104,495107,161109,613113,17391,070143,657186,681164,196132,328129,730120,880138,498118,825115,433119,871123,585114,039133,365201,105188,464143,979108,633143,786109,167110,90698,147103,617100,428142,617147,004224,449197,228119,63297,231106,3174,719,23974.70%
nonchim101,63896,40298,461103,390101,14282,753142,364177,594155,406115,894112,506107,050128,659109,798105,229108,422114,525104,381129,115195,997183,273123,03590,129122,43297,12699,88486,65894,98690,988127,874140,094216,540191,48699,00483,12889,3644,326,72768.49%

This table can be downloaded as an Excel table below:

 

5. DADA2 Amplicon Sequence Variants (ASVs). A total of 2072 unique merged and chimera-free ASV sequences were identified, and their corresponding read counts for each sample are available in the "ASV Read Count Table" with rows for the ASV sequences and columns for sample. This read count table can be used for microbial profile comparison among different samples and the sequences provided in the table can be used to taxonomy assignment.

 

The table can be downloaded from this link:

 
 

Sample Meta Information

Download Sample Meta Information
#SampleIDSampleNameMethodHLSourceGroup
F12829.S01MA1MasterpureTSUPASUPA
F12829.S02MA2MasterpureFSUPASUPA
F12829.S03MA3MasterpureFSUPASUPA
F12829.S04MB1MasterpureTSUPBSUPB
F12829.S05MB2MasterpureFSUPBSUPB
F12829.S06MB3MasterpureFSUPBSUPB
F12829.S07MOM1MasterpureTOMOM
F12829.S08MOM2MasterpureFOMOM
F12829.S09MOM3MasterpureFOMOM
F12829.S10MZM1MasterpureTZMZM
F12829.S11MZM2MasterpureFZMZM
F12829.S12MZM3MasterpureFZMZM
F12829.S13PA1PowerSoilTSUPASUPA
F12829.S14PA2PowerSoilFSUPASUPA
F12829.S15PA3PowerSoilFSUPASUPA
F12829.S16PB1PowerSoilTSUPBSUPB
F12829.S17PB2PowerSoilFSUPBSUPB
F12829.S18PB3PowerSoilFSUPBSUPB
F12829.S19POM1PowerSoilTOMOM
F12829.S20POM2PowerSoilFOMOM
F12829.S21POM3PowerSoilFOMOM
F12829.S22PZM1PowerSoilTZMZM
F12829.S23PZM2PowerSoilFZMZM
F12829.S24PZM3PowerSoilFZMZM
F12829.S25ZA1ZymoTSUPASUPA
F12829.S26ZA2ZymoFSUPASUPA
F12829.S27ZA3ZymoFSUPASUPA
F12829.S28ZB1ZymoTSUPBSUPB
F12829.S29ZB2ZymoFSUPBSUPB
F12829.S30ZB3ZymoFSUPBSUPB
F12829.S31ZOM1ZymoTOMOM
F12829.S32ZOM2ZymoFOMOM
F12829.S33ZOM3ZymoFOMOM
F12829.S34ZZM1ZymoTZMZM
F12829.S35ZZM2ZymoFZMZM
F12829.S36ZZM3ZymoFZMZM
 
 

ASV Read Counts by Samples

#Sample IDRead Count
F12829.S0682,753
F12829.S3583,128
F12829.S2786,658
F12829.S3689,364
F12829.S2390,129
F12829.S2990,988
F12829.S2894,986
F12829.S0296,402
F12829.S2597,126
F12829.S0398,461
F12829.S3499,004
F12829.S2699,884
F12829.S05101,142
F12829.S01101,638
F12829.S04103,390
F12829.S18104,381
F12829.S15105,229
F12829.S12107,050
F12829.S16108,422
F12829.S14109,798
F12829.S11112,506
F12829.S17114,525
F12829.S10115,894
F12829.S24122,432
F12829.S22123,035
F12829.S30127,874
F12829.S13128,659
F12829.S19129,115
F12829.S31140,094
F12829.S07142,364
F12829.S09155,406
F12829.S08177,594
F12829.S21183,273
F12829.S33191,486
F12829.S20195,997
F12829.S32216,540
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences. It consists of MOMD (version 0.1), the HOMD (version 15.2 http://www.homd.org/index.php?name=seqDownload&file&type=R ), HOMD 16S rRNA RefSeq Extended Version 1.1 (EXT), GreenGene Gold (GG) (http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/gold_strains_gg16S_aligned.fasta.gz) , and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 from HOMD V15.22, 495 from EXT, 3,940 from GG and 18,044 from NCBI, a total of 25,120 sequences. Altogether these sequence represent a total of 15,601 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010). The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.

3. Designations used in the taxonomy:

	1) Taxonomy levels are indicated by these prefixes:
	
	   k__: domain/kingdom
	   p__: phylum
	   c__: class
	   o__: order
	   f__: family
	   g__: genus  
	   s__: species
	
	   Example: 
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
		
	2) Unique level identified – known species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
	
	   The above example shows some reads match to a single species (all levels are unique)
	
	3) Non-unique level identified – known species:

	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
	   
	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
	   genus Roseburia; the “spp123” is a temporally assigned species ID.
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
	   
	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
	   the “spp234” is a temporally assigned species ID.
	
	4) Unique level identified – unknown species, potential novel species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
	   
	   The above example indicates that some reads have no match to any of the reference sequences with 
	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
	   (But they are not the same species).
	
	5) Multiple level identified – unknown species, potential novel species:
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
	
	   The above example indicates that some reads have no match to any of the reference sequences 
	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
	   However this groups of reads (actually the representative read from a de novo  OTU) 
	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
	   closest species, instead this group of reads match equally to multiple species at 96%. 
	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
	   temporary ID for this potential novel species. 

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=432 reads)
ATotal reads4,326,7274,326,727
BTotal assigned reads4,323,3264,323,326
CAssigned reads in species with read count < MPC028,358
DAssigned reads in samples with read count < 50000
ETotal samples3636
FSamples with reads >= 5003636
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)4,323,3264,294,968
IReads assigned to single species3,519,8513,498,298
JReads assigned to multiple species406,100404,238
KReads assigned to novel species397,375392,432
LTotal number of species637220
MNumber of single species389193
NNumber of multi-species278
ONumber of novel species22119
PTotal unassigned reads3,4013,401
QChimeric reads4242
RReads without BLASTN hits169169
SOthers: short, low quality, singletons, etc.3,1903,190
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyF12829.S01F12829.S02F12829.S03F12829.S04F12829.S05F12829.S06F12829.S07F12829.S08F12829.S09F12829.S10F12829.S11F12829.S12F12829.S13F12829.S14F12829.S15F12829.S16F12829.S17F12829.S18F12829.S19F12829.S20F12829.S21F12829.S22F12829.S23F12829.S24F12829.S25F12829.S26F12829.S27F12829.S28F12829.S29F12829.S30F12829.S31F12829.S32F12829.S33F12829.S34F12829.S35F12829.S36
SP10Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;gingivalis59059559091256960800000074355454911501196881000000320394363683547790000000
SP100Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;catoniae206159191221192145000000221184193197210153000000108170120146105149000000
SP102Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;tannerae852617758000060000851583637000000000332430348000000000
SP104Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-3];bacterium HMT1001361121201881541360000001601218720614216900000090816010797142000000
SP109Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT4723563843501041165900000040925333010311078000000170222143507188000000
SP11Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT1697646748761165998850045600012441109110321372313235700000011791126979228922653246010176000
SP110Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;trevisanii100111800000000001098571000000000618873000000000
SP111Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;serpentiformis0291867717200000016220747768000000000453657000000
SP114Bacteria;Actinobacteria;Actinobacteria;Propionibacteriales;Propionibacteriaceae;Arachnia;propionica1351331364342290000003353142428188770000002482972668591102000000
SP115Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-7];[Eubacterium]_yurii_subsps._yurii_&_margaretiae533027307211252000000562332262286232000000301329186185270000000
SP119Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nigrescens6885046261008604581000000603428452789597656000000301319241475390547000000
SP12Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum32962953303415191227107910211314470003627264528601546144811560115133600001908201517698858481231226922720000
SP120Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;buccalis694572615499461386000000904686614521480532000000423492456417367519000000
SP128Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp. HMT90075798012060000009571651695000000314626547000000
SP129Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp. HMT513265275270000000000394235239000000000173181166000000000
SP131Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Acidovorax;temperans0000000000000000000000000000000221416000
SP132Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT89795105108000000000716433461000000000443477376000000000
SP133Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Bacteroidaceae;Phocaeicola;vulgatus000000000000000000011940000000000000000
SP135Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;valvarum17162410069800000002945448384680000005178445768000000
SP136Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Stomatobaculum;sp. HMT09785548316192000000060704617211200000057786416030000000
SP14Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;pasteri11741092111146854903400001116965961381223200000063374855821752000000
SP143Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT17088751012792142290000001631431247028088880000001521141339349601359000000
SP144Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcus;stomatis161618000000000885699000000000846982000000000
SP145Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;loescheii165172170881058100000022120318975108680000009481756760105000000
SP146Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;hofstadii137150157000000000166156137000000000967498000000000
SP148Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;salivarius41029631611518000000166202160343332963602000000140175176274529233759000000
SP15Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT22112801167129000000000015391379150200000000095712491075000000000
SP150Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;sp. HMT780625539574000000000477368363000000000219252232000000000
SP151Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;gingivalis000194641190000000001071711790000000006257128000000
SP152Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT4171099912216080000007521781461419000000015516616614022000000
SP155Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sputigena886293135119740000001026546858975000000483636334768000000
SP156Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Megasphaera;micronuciformis855281602000000836033700000000504834000000000
SP157Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospirillales;Halomonadaceae;Halomonas;alkaliantarctica00000001184400000000002582520000000000363342000
SP158Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT864234193188000000000250198210000000000105149119000000000
SP159Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;gerencseriae1391361692221330000002873312957691640000003683143076877111000000
SP161Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-6];bacterium HMT87023720421761595200000017217715153674300000012412884422750000000
SP163Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp. HMT20412184112817667000000140125709590840000005973606147104000000
SP164Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT349138168182000000000140106740000000005011543000000000
SP165Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Salmonella;enterica000000015157258832592423319000000000147161011418712000000000963068928899
SP167Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;salivae21720022199150000002302352151480000000931081090010000000
SP168Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mitis324948484246210326362040000000448550174718222523682504000000480553574603203222752971000000
SP169Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;haemolyticus373283338351318000000376312326343926000000176241173171228000000
SP17Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Stomatobaculum;longum214216259080000000239209167701700000022826620010169000000
SP171Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;sp. HMT286127133133000000000226110121000000000909074000000000
SP174Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;showae10496109503453340000000139121101499498337000000396260314271338000000
SP175Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._animalis67859067593151171000000721589589951471160000003955063899790117000000
SP178Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;atypica52543884567700000037402952765100000024250324255000000
SP18Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT308695380255187180000000695060215216169000000423929121118179000000
SP181Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Eikenella;corrodens13012114218611412400000018413416118415511700000081958211990141000000
SP183Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT47500025430318300000000018420817300000000073100142000000
SP185Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Shigella;boydii00000001870336833363294000000000212514282554000000000128510251243
SP188Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;wadei1972165718414283983080019000224721942206394396387000000136217331802301245463000000
SP19Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;matruchotii2861269026947456600568406000555143864223154204740254000027452869267777301440269394000
SP190Bacteria;Firmicutes;Bacilli;Bacillales;Bacillaceae;Bacillus;halotolerans0000000170444425764218040588000000000235861831628223000000000187331506517532
SP198Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Ralstonia;pickettii00000000280000000000000000000000510347000
SP199Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Ottowia;sp. HMT8941431391537894935480000002272421976217035210000008712491387312534000000
SP2Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;leadbetteri561521547505942213492000000738578584451544633540000000292445279267521523030000000
SP200Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT914176137962550000000777057470000000107303544000000
SP201Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;artemidis53144947028223923100000054031038223723820700000025528220814898135000000
SP203Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva6162511438168913760000009081792081263524980000001258481340936464975000000
SP204Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;segnis368307378000000000413333306000000000199264230000000000
SP205Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mutans343440000014120000395370388000010513200040137837900005351585000
SP207Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Anaeroglobus;geminatus1916066504300000013822614242000000050182639000000
SP21Bacteria;Proteobacteria;Alphaproteobacteria;Hyphomicrobiales;Phyllobacteriaceae;Phyllobacterium;myrsinacearum0000000000000000000000000000000575339000
SP211Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;oris2642542796985375410011000520563441179521532175000000541522515231423193404000000
SP217Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;georgiae2826299400440000506346102017000000607164142327000000
SP22Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT212198167180289030072475000000251270217271128892078000000133151115163714752324000000
SP221Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT180159116151626204196117000000228621901848241245260000000252523862036269261405000000
SP224Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT41413586111000000000463364399000000000329309320000000000
SP227Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;gordonii3058209030651783172618760510000319133733055459951285238000000322031722907490549487111000000
SP229Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT3922262052021269138410690024000212276178143914231111000000971501238056921075000000
SP23Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT17112111913311310676000000221209227279276341000000265147205391380513000000
SP230Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;flava2331912122282138618030000002361641693291333424490000009113699183817462235000000
SP231Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT178243281243500024000070368956314232300000082472176610612000000
SP234Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Lancefieldella;parvula674453121127119000000264014455971000000292318516199000000
SP236Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parainfluenzae6496206221297771000000773631695109104920000004694703855751102000000
SP238Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;elongata338395369000000000566525369000000000202293206000000000
SP239Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;vestibularis031220000000001321171010000000009116299000000000
SP245Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT225000386453371000000004369353300000000050210210289000000
SP247Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;sp. HMT237766660000000000695441000000000303534000000000
SP25Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT17588781091992945905000001189102994923324333000000011121037868299333493000000
SP250Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;constellatus15016474132000000907259116137164000000677050140115216000000
SP257Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;mucilaginosa24040227531504100000028424525050547100000033237833795127125000000
SP258Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT90210095830000000001187789000000000586246000000000
SP26Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;saburreum451424492100100290000583582513152422000000421485418121915000000
SP260Bacteria;Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus;faecalis0000000162023842314246400000000012210915211649000000000741577128014
SP263Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;histicola64524423413100000066605720311400000036523111815000000
SP264Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;dentocariosa28613479325859559353900200003666372433797029138380000003054348828727637071238000000
SP267Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;copri00000000000000000005250000000000000000
SP268Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT347360403296173433000000411307303131315000000238268202141519000000
SP27Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;sp. HMT1101691431401721691350000001721691651601571690000007371124174204259000000
SP271Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sobrinus000167928300000000015121732190900136000000168816872674000000
SP272Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT4481026100210350000120000235025882153000000000257526082282000000000
SP273Bacteria;Absconditabacteria_(SR1);Absconditabacteria_(SR1)_[C-1];Absconditabacteria_(SR1)_[O-1];Absconditabacteria_(SR1)_[F-1];Absconditabacteria_(SR1)_[G-1];bacterium HMT874595963000000000646681000000000494444000000000
SP274Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT47354744593538800002115000512739944055000000000254628882281000000000
SP275Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT33516717416000001300002021891430000000009714186000000000
SP276Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp. HMT32222420020434936320600000021617416135339327200000096122107212183257000000
SP278Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;cristatus_clade_578291346343222822000000522581497203117000000647614593131880000000
SP285Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Escherichia;coli000000018329674068336295000000000413829145078000000000267720732564
SP294Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Shigella;sonnei000000096820136231349612365000000000818254929838000000000502640525040
SP295Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT942717477000000000895078000000000344145000000000
SP296Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;dentalis209196227007025000010619969176100000000929933825766000000
SP298Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Oxalobacteraceae;Herbaspirillum;huttiense0000000000000000000000000000000166495000
SP299Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT06600012371500000012157344440000000141310446784000000
SP3Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;noxia434342415000000000426284331000000000205174203000000000
SP302Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT338171106136000000000134124127000000000979972000000000
SP308Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;anginosus828480000000000277293253000000000250331310000000000
SP31Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;gingivalis0000003458790987656000000000237666227837700000000018510432289719000
SP311Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-9];[Eubacterium]_brachy5235342162000000089134663345330000001337585223454000000
SP316Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidales_[F-2];Bacteroidales_[G-2];bacterium HMT2743862550000000001274547000000000245667000000000
SP319Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;johnsonii101016738665000000535849232215270000000574637231230333000000
SP32Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Dialister;invisus2472092149969850000002931912371419095000000153184135515050000000
SP321Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;intermedius156169188225298244000000342360326413430514000000398409338447544641000000
SP322Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT920041495704700000081426167580000005100303547000000
SP323Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp. HMT27832226330498105860000003162392219610286000000127193137504476000000
SP326Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;oralis590547530141148970000006975455621481681340000003763452968778151000000
SP327Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;hongkongensis3333243158741054736000000422355315802662602000000181217147513440635000000
SP33Bacteria;Firmicutes;Bacilli;Bacillales;Bacillaceae;Allobacillus;halotolerans749004690010801147947720500267700137300613177531104799003017001899009071221632318139300
SP331Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Faecalibacterium;prausnitzii00000000000000000004390000000000000000
SP332Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT8635959420000170000658763000000000314234000000000
SP337Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_subsp._tigurinus_clade_070247267316000000000846864804000000000819962770000000000
SP34Bacteria;Deinococcus-Thermus;Deinococci;Trueperales;Trueperaceae;Truepera;radiovictrix0340004924282262080001977466213814595960454053545101984411940847300
SP346Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT324113116119000000000162901200000000007711541000000000
SP349Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;warneri000000918656050000000000991235000000000024741929000
SP35Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;subflava00000029869979630000000003076218856000000200241500111650000
SP350Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;cinerea854757848000000000789684653000000000425477387000000000
SP356Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;aeria465152272193162000000496056226239235000000316135225274333000000
SP358Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Olsenella;sp. HMT807241733263122000000254186189743836000000196165189385152000000
SP36Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;denticola7371811361216807100007954741689583000000386168455197000000
SP369Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;meyeri2731430260049136000403435422332000000394217535761000000
SP375Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;micra234193292000000000288260255000000000310267212000000000
SP378Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Lancefieldella;rimae324645448952000000242126383748000000392128462956000000
SP379Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;endodontalis362368318000000000424272369000000000212217160000000000
SP38Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;granulosa5374755027433530300000679501529626772000000290344286484352000000
SP380Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;goodfellowii13479920000000001237678000000000517052000000000
SP384Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT42340676652530318572141167201110000692973846758291031963052000000777483367759295028674027000000
SP396Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;intermedia6106798532141791240000006794824861641481260000003853802238076107000000
SP397Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT348426454463638774000000362336300526750000000202304229192874000000
SP398Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT346552542504242219168007300053044844615315413300000037542137394104167000000
SP4Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Peptidiphaga;sp. HMT1833472993480000700009388898618130000000114387598271717000000
SP404Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT877847775000000000224173208000000000262223233000000000
SP41Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Lautropia;mirabilis90106803397406128520400007645852319261824010000007911072305932824812000000
SP411Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;cristatus214231214000000000382427352000000000427409369000000000
SP412Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Scardovia;wiggsiae0009015281000000000112102129000000000132136186000000
SP413Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Solobacterium;moorei576268746952000000784352514045000000566041533974000000
SP42Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT314451397406000000000515325363000000000266256170000000000
SP423Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT412283229294000000000295253270000000000141188149000000000
SP424Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;flavescens1168887000000000967377000000000744960000000000
SP426Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Propionibacteriaceae;Cutibacterium;acnes000000141145177000000090469427900000000001740000
SP430Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;endodontalis1751452110000000001951861280000000008612472000000000
SP44Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Limosilactobacillus;fermentum0000000229031973364380620000000012399970510032000003000204091554915182
SP46Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;umeaense9086790070000001017576000000000637157004000000
SP49Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oulorum5024255021318988000000636473421958167000000282286254404662000000
SP5Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;parvula3400318732531595139212990450000263924152515102313121054000000159520621630670715977000000
SP52Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;maculosa106811096920000009160591047000000536344606000000
SP53Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;haemolysans2872643491158993000000703765672174195213000000620743607166170264000000
SP54Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Erythrobacteraceae;Qipengyuania;seohaensis0000003795470000000000055596400000000001020336000
SP55Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sputigena302317141880710170000003124151573162913230000001714109398061114000000
SP56Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;naeslundii19417819212381760150000544570517321374381000000613548532409398604000000
SP58Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT300140101117116845900000014910587876457000000728283283756000000
SP59Bacteria;Firmicutes;Bacilli;Bacillales;Listeriaceae;Listeria;monocytogenes0000000980342231593501000000000163861253111950000000000141981386913595
SP6Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;dispar8877337390310000000625626571000000000375476338000000000
SP60Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT0642719382335403846260310000455348644536281448000000526557214988354939000000
SP62Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Catonella;morbi13110213516718613200000014895102132142161000000737055108106146000000
SP63Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT525322423373633000000136116136171158148000000200133132154141272000000
SP64Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;sp. HMT07818616522010126000000230209174098000000189200174609000000
SP65Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica1279107112392569251718400000001063959993180117931595000000548727514100910091363000000
SP66Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_subsp._tigurinus_clade_07165013519411943182640340000158117661624467455513000000192220021842436460650000000
SP67Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;saccharolytica566065657339000000743253423844000000222325352228000000
SP68Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT957364852538268554387000000433638515853814397000000404135335333924693000000
SP69Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_subsp._dentisani_clade_05832333833911251400000042044137481515000000378474346161121000000
SP70Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;adiacens2339205718431137123511650290000238123072140128514151349000000238326402056132511761820000000
SP71Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;massiliensis381359379000000000901802753424053000000898795756363449000000
SP72Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;chosunense85891293428230022000080987978605258000007679758270020000000
SP77Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis9352302135610113498000000179020361695142139205000000197420811949188214257000000
SP78Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;hominis71567726121200000010060611210120000002942410616000000
SP80Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;socranskii745292262415000000633748342119000000363934111721000000
SP81Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis5394815593120299026300000001126110010186625779179890000001130124210539332895311651000000
SP82Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Peptidiphaga;gingivicola63731060000280000179192175000000000222238147000000000
SP83Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;gracilis105893010073001081840000001290885953283256201000000640705567134134152000000
SP84Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;odontolytica155134121453045363504000000183204200713081838930000000231251188109851161116576000000
SP86Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;sp. HMT036325276345231620000000365299295001300000018425016201312000000
SP87Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;hwasookii101124273924972134000000121314294929022025000000000163214352029000000
SP89Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._vincentii5336016091200000000709594519000000000405344321000000000
SP9Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oris477471496604530452652447318076000448332344488418399391575816098000251258156225191359232433720895000
SP90Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcaceae_[G-1];bacterium HMT075146127171684807554000000168100112528520532000000746478356330432000000
SP91Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT2154554805127366610330000460433408314940000000280377308122441000000
SP94Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;infelix445651625143000000735439353639000000323842172225000000
SP95Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;aeruginosa000000074537101011066610060000000000524836967005000000004336426623144
SP96Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT3176275305781000000000724462559000000000283350343500000000
SP97Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;elegans688656659297309253000000503512516169218208000000378438333129152198000000
SP98Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus52451952643464300000074446644238383400000030936031281518000000
SP99Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;morbillorum192170220235181248000000317330312518589565000000338330288674584858000000
SPN108Bacteria;Bacteroidota;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Frondibacter;mangrovi_nov_92.484%43066040050013103014646943831670044720022800067205115501212715490019830014620048943144641442094500
SPN109Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT171 nov_96.813%414868192418000000172184212335452000000314222223497163000000
SPN121Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;israelii_nov_94.882%985571000000000119131143000000000141169143000000000
SPN133Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Faecalibacterium;prausnitzii_nov_96.976%00000000000000000009860000000000000000
SPN141Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;veroralis_nov_97.342%145124109000000000136123129000000000787478000000000
SPN142Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT957 nov_97.550%125113145000000000119941090000000007810887000000000
SPN153Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lacrimispora;xylanolytica_nov_88.613%5429631010150000001399889434036000000617366332427000000
SPN164Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;zoohelcum_nov_92.593%1158985000000000146153100000000000706134000000000
SPN176Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT169 nov_97.992%9966950000000009810291000000000828665000000000
SPN185Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;israelii_nov_96.647%000202023000000018011510087000000017014271116000000
SPN194Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;naeslundii_nov_97.760%00024231900310000005187890000000009680113000000
SPN204Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus_nov_97.397%757287000000000644764000000000305530000000000
SPN3Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT175 nov_97.746%8868719280000850000136013421237000000000139713271246000000000
SPN43Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp. HMT284 nov_97.746%1301071320000000001461111070000000006312268000000000
SPN52Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;matruchotii_nov_97.959%8267187710000000001688145513060000000008331047971000000000
SPN64Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-6];bacterium HMT870 nov_96.994%706606654000000000523483466000000000352357361000000000
SPN74Bacteria;Actinobacteria;Actinomycetia;Propionibacteriales;Nocardioidaceae;Aeromicrobium;panaciterrae_nov_96.104%000000072539800000000003654130000000000716347000
SPN85Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;sp. HMT780 nov_97.228%456370431000000000326278335000000000201222189000000000
SPN96Bacteria;Actinobacteria;Actinomycetia;Streptosporangiales;Nocardiopsaceae;Nocardiopsis;nikkonensis_nov_97.257%000000653160100000000031983530000000000413459000
SPP1Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp1_270086108103000000000779611600000000198813893000000
SPP11Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp11_2000144417811378000000000119214271575000000000128113131729000000
SPP14Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;multispecies_spp14_2363273318000000000330274284000000000169197179000000000
SPP21Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_spp21_211312410900000000013095112000000000766868000000000
SPP25Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;multispecies_spp25_21102210046104873167635405286670334900085087680778521129249812059201310000532162415302133571358018729000000
SPP4Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;multispecies_spp4_300000001360120112101335000000000216881677217358000000000138931422114131
SPP5Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp5_2418336379970002200004623463817300000000245316268000000000
SPP9Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospirillales;Halomonadaceae;Halomonas;multispecies_spp9_20000000451140000000000209226000000000024557000
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1SUPA vs SUPB vs OM vs ZMPDFSVGPDFSVGPDFSVG
Comparison 2T vs FPDFSVGPDFSVGPDFSVG
Comparison 3Masterpure vs PowerSoil vs ZymoPDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[1][2] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).


References:
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled.


References:
Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons
 
Comparison 1SUPA vs SUPB vs OM vs ZMView in PDFView in SVG
Comparison 2T vs FView in PDFView in SVG
Comparison 3Masterpure vs PowerSoil vs ZymoView in PDFView in SVG
 
 
 

Group Significance of Alpha-diversity Indices

To test whether the alpha diversity among different comparison groups are different statistically, we use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 "diversity" package. Kruskal Wallis H test is the non-parametric alternative to the One Way ANOVA. Non-parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (like the assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The H test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.SUPA vs SUPB vs OM vs ZMObserved FeaturesShannon IndexSimpson Index
Comparison 2.T vs FObserved FeaturesShannon IndexSimpson Index
Comparison 3.Masterpure vs PowerSoil vs ZymoObserved FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1SUPA vs SUPB vs OM vs ZMPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2T vs FPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3Masterpure vs PowerSoil vs ZymoPDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) as the group significant testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.SUPA vs SUPB vs OM vs ZMBray–CurtisCorrelationAitchison
Comparison 2.T vs FBray–CurtisCorrelationAitchison
Comparison 3.Masterpure vs PowerSoil vs ZymoBray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information (http://www.compositionaldata.com/).

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificant that a feature/species is differentially abundant.


References:

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.

Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.SUPA vs SUPB vs OM vs ZM
Comparison 2.T vs F
Comparison 3.Masterpure vs PowerSoil vs Zymo
 
 

ANCOM-BC2 Differential Abundance Analysis

 

Starting with version V1.2, we include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020). ANCOM-BC is an updated version of "ANCOM" that:
(a) provides statistically valid test with appropriate p-values,
(b) provides confidence intervals for differential abundance of each taxon,
(c) controls the False Discovery Rate (FDR),
(d) maintains adequate power, and
(e) is computationally simple to implement.

The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

Starting with version V1.43, ANCOM-BC2 is used instead of ANCOM-BC, So that multiple pairwise directional test can be performed (if there are more than two gorups in a comparison). When performing pairwise directional test, the mixed directional false discover rate (mdFDR) is taken into account. The mdFDR is the combination of false discovery rate due to multiple testing, multiple pairwise comparisons, and directional tests within each pairwise comparison. The mdFDR is adopted from (Guo, Sarkar, and Peddada 2010; Grandhi, Guo, and Peddada 2016). For more detail explanation and additional features of ANCOM-BC2 please see author's documentation.

References:

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

Guo W, Sarkar SK, Peddada SD. Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories. Biometrics. 2010 Jun;66(2):485-92. doi: 10.1111/j.1541-0420.2009.01292.x. Epub 2009 Jul 23. PMID: 19645703; PMCID: PMC2895927.

Grandhi A, Guo W, Peddada SD. A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies. BMC Bioinformatics. 2016 Feb 25;17:104. doi: 10.1186/s12859-016-0937-5. PMID: 26917217; PMCID: PMC4768411.

 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.SUPA vs SUPB vs OM vs ZM
Comparison 2.T vs F
Comparison 3.Masterpure vs PowerSoil vs Zymo
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011). Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.

 
SUPA vs SUPB vs OM vs ZM
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.SUPA vs SUPB vs OM vs ZM
Comparison 2.T vs F
Comparison 3.Masterpure vs PowerSoil vs Zymo
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1SUPA vs SUPB vs OM vs ZMPDFSVGPDFSVGPDFSVG
Comparison 2T vs FPDFSVGPDFSVGPDFSVG
Comparison 3Masterpure vs PowerSoil vs ZymoPDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1SUPA vs SUPB vs OM vs ZMPDFSVGPDFSVGPDFSVG
Comparison 2T vs FPDFSVGPDFSVGPDFSVG
Comparison 3Masterpure vs PowerSoil vs ZymoPDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1SUPA vs SUPB vs OM vs ZMPDFSVGPDFSVGPDFSVG
Comparison 2T vs FPDFSVGPDFSVGPDFSVG
Comparison 3Masterpure vs PowerSoil vs ZymoPDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015). SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012), which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.


References:

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.

 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

XIII. Disclaimer

The results of this analysis are for research purpose only. They are not intended to diagnose, treat, cure, or prevent any disease. Forsyth and FOMC are not responsible for use of information provided in this report outside the research area.

 

Copyright FOMC 2023