FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.50

Version History

The Forsyth Institute, Cambridge, MA, USA
August 25, 2025

Project ID: 20250807_obesity


I. Project Summary

Project 20250807_obesity services include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report, as well as the sequence raw data from the download links provided below. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested. We provide many analyses, starting from the raw sequence quality and noise filtering, pair reads merging, as well as chimera filtering for the sequences, using the DADA2 denosing algorithm and pipeline.

We also provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

The samples were processed and analyzed with the ZymoBIOMICS® Service: Targeted Metagenomic Sequencing (Zymo Research, Irvine, CA).

DNA Extraction: If DNA extraction was performed, the following DNA extraction kit was used according to the manufacturer’s instructions:

ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA)
N/A (DNA Extraction Not Performed)
Elution Volume: 50µL
Additional Notes: NA

Targeted Library Preparation: The DNA samples were prepared for targeted sequencing with the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA). These primers were custom designed by Zymo Research to provide the best coverage of the 16S gene while maintaining high sensitivity. The primer sets used in this project are marked below:

Quick-16S™ Primer Set V1-V2 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V1-V3 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V3-V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V6-V8 (Zymo Research, Irvine, CA)
Additional Notes: NA

The sequencing library was prepared using an innovative library preparation process in which PCR reactions were performed in real-time PCR machines to control cycles and therefore limit PCR chimera formation. The final PCR products were quantified with qPCR fluorescence readings and pooled together based on equal molarity. The final pooled library was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research, Irvine, CA), then quantified with TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher Scientific, Waltham, WA).

Control Samples: The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control for each DNA extraction, if performed. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each targeted library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

Sequencing: The final library was sequenced on Illumina® NextSeq 2000™ with a p1 (Illumina, Sand Diego, CA) reagent kit (600 cycles). The sequencing was performed with 25% PhiX spike-in.

Absolute Abundance Quantification*: A quantitative real-time PCR was set up with a standard curve. The standard curve was made with plasmid DNA containing one copy of the 16S gene and one copy of the fungal ITS2 region prepared in 10-fold serial dilutions. The primers used were the same as those used in Targeted Library Preparation. The equation generated by the plasmid DNA standard curve was used to calculate the number of gene copies in the reaction for each sample. The PCR input volume (2 µl) was used to calculate the number of gene copies per microliter in each DNA sample.
The number of genome copies per microliter DNA sample was calculated by dividing the gene copy number by an assumed number of gene copies per genome. The value used for 16S copies per genome is 4. The value used for ITS copies per genome is 200. The amount of DNA per microliter DNA sample was calculated using an assumed genome size of 4.64 x 106 bp, the genome size of Escherichia coli, for 16S samples, or an assumed genome size of 1.20 x 107 bp, the genome size of Saccharomyces cerevisiae, for ITS samples. This calculation is shown below:

Calculated Total DNA = Calculated Total Genome Copies × Assumed Genome Size (4.64 × 106 bp) ×
Average Molecular Weight of a DNA bp (660 g/mole/bp) ÷ Avogadro’s Number (6.022 x 1023/mole)


* Absolute Abundance Quantification is only available for 16S and ITS analyses.

The absolute abundance standard curve data can be viewed in Excel here:

The absolute abundance standard curve is shown below:

Absolute Abundance Standard Curve

 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:

1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

The raw NGS sequence data is available for download with the link provided below. The data is a compressed ZIP file and can be unzipped to individual sequence files. Since this is a pair-end sequencing, each of your samples is represented by two sequence files, one for READ 1, with the file extension “*_R1.fastq.gz”, another READ 2, with the file extension “*_R1.fastq.gz”. The files are in FASTQ format and are compressed. FASTQ format is a text-based data format for storing both a biological sequence and its corresponding quality scores. Most sequence analysis software will be able to open them. The Sample IDs associated with the R1 and R2 fastq files are listed in the table below:

Sample IDOriginal Sample IDRead 1 File NameRead 2 File Name
F24673.S10original sample ID herezr24673_10V1V3_R1.fastq.gzzr24673_10V1V3_R2.fastq.gz
F24673.S11original sample ID herezr24673_11V1V3_R1.fastq.gzzr24673_11V1V3_R2.fastq.gz
F24673.S12original sample ID herezr24673_12V1V3_R1.fastq.gzzr24673_12V1V3_R2.fastq.gz
F24673.S13original sample ID herezr24673_13V1V3_R1.fastq.gzzr24673_13V1V3_R2.fastq.gz
F24673.S14original sample ID herezr24673_14V1V3_R1.fastq.gzzr24673_14V1V3_R2.fastq.gz
F24673.S15original sample ID herezr24673_15V1V3_R1.fastq.gzzr24673_15V1V3_R2.fastq.gz
F24673.S16original sample ID herezr24673_16V1V3_R1.fastq.gzzr24673_16V1V3_R2.fastq.gz
F24673.S17original sample ID herezr24673_17V1V3_R1.fastq.gzzr24673_17V1V3_R2.fastq.gz
F24673.S18original sample ID herezr24673_18V1V3_R1.fastq.gzzr24673_18V1V3_R2.fastq.gz
F24673.S19original sample ID herezr24673_19V1V3_R1.fastq.gzzr24673_19V1V3_R2.fastq.gz
F24673.S01original sample ID herezr24673_1V1V3_R1.fastq.gzzr24673_1V1V3_R2.fastq.gz
F24673.S20original sample ID herezr24673_20V1V3_R1.fastq.gzzr24673_20V1V3_R2.fastq.gz
F24673.S21original sample ID herezr24673_21V1V3_R1.fastq.gzzr24673_21V1V3_R2.fastq.gz
F24673.S22original sample ID herezr24673_22V1V3_R1.fastq.gzzr24673_22V1V3_R2.fastq.gz
F24673.S23original sample ID herezr24673_23V1V3_R1.fastq.gzzr24673_23V1V3_R2.fastq.gz
F24673.S24original sample ID herezr24673_24V1V3_R1.fastq.gzzr24673_24V1V3_R2.fastq.gz
F24673.S25original sample ID herezr24673_25V1V3_R1.fastq.gzzr24673_25V1V3_R2.fastq.gz
F24673.S26original sample ID herezr24673_26V1V3_R1.fastq.gzzr24673_26V1V3_R2.fastq.gz
F24673.S27original sample ID herezr24673_27V1V3_R1.fastq.gzzr24673_27V1V3_R2.fastq.gz
F24673.S28original sample ID herezr24673_28V1V3_R1.fastq.gzzr24673_28V1V3_R2.fastq.gz
F24673.S29original sample ID herezr24673_29V1V3_R1.fastq.gzzr24673_29V1V3_R2.fastq.gz
F24673.S02original sample ID herezr24673_2V1V3_R1.fastq.gzzr24673_2V1V3_R2.fastq.gz
F24673.S30original sample ID herezr24673_30V1V3_R1.fastq.gzzr24673_30V1V3_R2.fastq.gz
F24673.S31original sample ID herezr24673_31V1V3_R1.fastq.gzzr24673_31V1V3_R2.fastq.gz
F24673.S32original sample ID herezr24673_32V1V3_R1.fastq.gzzr24673_32V1V3_R2.fastq.gz
F24673.S33original sample ID herezr24673_33V1V3_R1.fastq.gzzr24673_33V1V3_R2.fastq.gz
F24673.S34original sample ID herezr24673_34V1V3_R1.fastq.gzzr24673_34V1V3_R2.fastq.gz
F24673.S35original sample ID herezr24673_35V1V3_R1.fastq.gzzr24673_35V1V3_R2.fastq.gz
F24673.S36original sample ID herezr24673_36V1V3_R1.fastq.gzzr24673_36V1V3_R2.fastq.gz
F24673.S37original sample ID herezr24673_37V1V3_R1.fastq.gzzr24673_37V1V3_R2.fastq.gz
F24673.S38original sample ID herezr24673_38V1V3_R1.fastq.gzzr24673_38V1V3_R2.fastq.gz
F24673.S39original sample ID herezr24673_39V1V3_R1.fastq.gzzr24673_39V1V3_R2.fastq.gz
F24673.S03original sample ID herezr24673_3V1V3_R1.fastq.gzzr24673_3V1V3_R2.fastq.gz
F24673.S04original sample ID herezr24673_4V1V3_R1.fastq.gzzr24673_4V1V3_R2.fastq.gz
F24673.S05original sample ID herezr24673_5V1V3_R1.fastq.gzzr24673_5V1V3_R2.fastq.gz
F24673.S06original sample ID herezr24673_6V1V3_R1.fastq.gzzr24673_6V1V3_R2.fastq.gz
F24673.S07original sample ID herezr24673_7V1V3_R1.fastq.gzzr24673_7V1V3_R2.fastq.gz
F24673.S08original sample ID herezr24673_8V1V3_R1.fastq.gzzr24673_8V1V3_R2.fastq.gz
F24673.S09original sample ID herezr24673_9V1V3_R1.fastq.gzzr24673_9V1V3_R2.fastq.gz

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Raw sequence data download link:

 

VI. Analysis - DADA2 Read Processing

What is DADA2?

DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors [1]. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. DADA2 identified more real variants and output fewer spurious sequences than other methods.

DADA2’s advantage is that it uses more of the data. The DADA2 error model incorporates quality information, which is ignored by all other methods after filtering. The DADA2 error model incorporates quantitative abundances, whereas most other methods use abundance ranks if they use abundance at all. The DADA2 error model identifies the differences between sequences, eg. A->C, whereas other methods merely count the mismatches. DADA2 can parameterize its error model from the data itself, rather than relying on previous datasets that may or may not reflect the PCR and sequencing protocols used in your study.

DADA2 Software Package is available as an R package at : https://benjjneb.github.io/dada2/index.html

References

  1. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

Analysis Procedures:

DADA2 pipeline includes several tools for read quality control, including quality filtering, trimming, denoising, pair merging and chimera filtering. Below are the major processing steps of DADA2:

Step 1. Read trimming based on sequence quality The quality of NGS Illumina sequences often decreases toward the end of the reads. DADA2 allows to trim off the poor quality read ends in order to improve the error model building and pair mergicing performance.

Step 2. Learn the Error Rates The DADA2 algorithm makes use of a parametric error model (err) and every amplicon dataset has a different set of error rates. The learnErrors method learns this error model from the data, by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution. As in many machine-learning problems, the algorithm must begin with an initial guess, for which the maximum possible error rates in this data are used (the error rates if only the most abundant sequence is correct and all the rest are errors).

Step 3. Infer amplicon sequence variants (ASVs) based on the error model built in previous step. This step is also called sequence "denoising". The outcome of this step is a list of ASVs that are the equivalent of oligonucleotides.

Step 4. Merge paired reads. If the sequencing products are read pairs, DADA2 will merge the R1 and R2 ASVs into single sequences. Merging is performed by aligning the denoised forward reads with the reverse-complement of the corresponding denoised reverse reads, and then constructing the merged “contig” sequences. By default, merged sequences are only output if the forward and reverse reads overlap by at least 12 bases, and are identical to each other in the overlap region (but these conditions can be changed via function arguments).

Step 5. Remove chimera. The core dada method corrects substitution and indel errors, but chimeras remain. Fortunately, the accuracy of sequence variants after denoising makes identifying chimeric ASVs simpler than when dealing with fuzzy OTUs. Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant “parent” sequences. The frequency of chimeric sequences varies substantially from dataset to dataset, and depends on on factors including experimental procedures and sample complexity.

Results

1. Read Quality Plots NGS sequence analaysis starts with visualizing the quality of the sequencing. Below are the quality plots of the first sample for the R1 and R2 reads separately. In gray-scale is a heat map of the frequency of each quality score at each base position. The mean quality score at each position is shown by the green line, and the quartiles of the quality score distribution by the orange lines. The forward reads are usually of better quality. It is a common practice to trim the last few nucleotides to avoid less well-controlled errors that can arise there. The trimming affects the downstream steps including error model building, merging and chimera calling. FOMC uses an empirical approach to test many combinations of different trim length in order to achieve best final amplicon sequence variants (ASVs), see the next section “Optimal trim length for ASVs”.

Quality plots for all samples:

2. Optimal trim length for ASVs The final number of merged and chimera-filtered ASVs depends on the quality filtering (hence trimming) in the very beginning of the DADA2 pipeline. In order to achieve highest number of ASVs, an empirical approach was used -

  1. Create a random subset of each sample consisting of 5,000 R1 and 5,000 R2 (to reduce computation time)
  2. Trim 10 bases at a time from the ends of both R1 and R2 up to 50 bases
  3. For each combination of trimmed length (e.g., 300x300, 300x290, 290x290 etc), the trimmed reads are subject to the entire DADA2 pipeline for chimera-filtered merged ASVs
  4. The combination with highest percentage of the input reads becoming final ASVs is selected for the complete set of data

Below is the result of such operation, showing ASV percentages of total reads for all trimming combinations (1st Column = R1 lengths in bases; 1st Row = R2 lengths in bases):

R1/R2301291281271261251
30153.14%54.62%55.18%55.86%56.48%52.79%
29153.25%54.72%55.25%55.95%52.45%32.05%
28153.68%55.22%55.60%52.10%32.06%15.07%
27154.42%55.91%52.12%32.31%15.08%11.49%
26154.74%52.07%31.99%15.06%11.53%7.09%
25151.24%32.47%15.42%11.77%7.21%2.66%

Based on the above result, the trim length combination of R1 = 301 bases and R2 = 261 bases (highlighted red above), was chosen for generating final ASVs for all sequences. This combination generated highest number of merged non-chimeric ASVs and was used for downstream analyses, if requested.

3. Error plots from learning the error rates After DADA2 building the error model for the set of data, it is always worthwhile, as a sanity check if nothing else, to visualize the estimated error rates. The error rates for each possible transition (A→C, A→G, …) are shown below. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal definition of the Q-score. The ideal result would be the estimated error rates (black line) are a good fit to the observed rates (points), and the error rates drop with increased quality as expected.

Forward Read R1 Error Plot


Reverse Read R2 Error Plot

The PDF version of these plots are available here:

 

4. DADA2 Result Summary The table below shows the summary of the DADA2 analysis, tracking paired read counts of each samples for all the steps during DADA2 denoising process - including end-trimming (filtered), denoising (denoisedF, denoisedF), pair merging (merged) and chimera removal (nonchim).

Sample IDF24673.S01F24673.S02F24673.S03F24673.S04F24673.S05F24673.S06F24673.S07F24673.S08F24673.S09F24673.S10F24673.S11F24673.S12F24673.S13F24673.S14F24673.S15F24673.S16F24673.S17F24673.S18F24673.S19F24673.S20F24673.S21F24673.S22F24673.S23F24673.S24F24673.S25F24673.S26F24673.S27F24673.S28F24673.S29F24673.S30F24673.S31F24673.S32F24673.S33F24673.S34F24673.S35F24673.S36F24673.S37F24673.S38F24673.S39Row SumPercentage
input307,792330,649338,928416,062306,856362,632381,290345,478389,751354,377410,112337,791352,900331,349385,131383,688305,956381,884378,514447,528373,286444,854332,307406,097338,451342,451481,389398,937364,168350,450392,067377,565334,907303,223327,912377,517422,358407,768310,87014,335,245100.00%
filtered223,006240,137246,380302,405222,985262,858276,547250,693283,711257,784298,249244,379257,109241,030278,783279,069222,776277,564274,984323,798271,335322,999240,314294,530246,213248,334349,047289,341263,840254,650284,238274,762242,897220,405238,369274,541306,172295,607225,35510,407,19672.60%
denoisedF220,551238,111244,213300,034220,926261,149273,544248,324282,070255,351296,364242,448254,800238,443276,075276,642220,147275,527273,380320,250269,552321,092238,400292,508244,015246,035346,605286,965262,252252,367281,636273,193240,872218,953236,115272,594304,227293,311222,68810,321,72972.00%
denoisedR216,241235,127240,069295,549216,791257,979270,329244,911278,299252,128292,790238,900250,843234,096272,769272,163216,169271,374268,936315,416266,541317,096234,139288,095240,829241,510342,223282,725258,387247,704276,651269,584237,494215,226232,496269,707300,274288,361218,79210,168,71370.94%
merged202,224225,404223,901279,738205,904250,087255,174231,270268,243239,279282,891227,145236,369214,940260,011259,454202,476259,243260,526296,758258,539308,782222,561276,768227,869228,285326,772271,603249,392232,776261,078258,019227,318202,207219,407260,196291,289274,646205,6859,684,22967.56%
nonchim183,552192,647197,105247,094185,538195,225216,902201,154234,053210,896228,887195,651214,108188,936228,546239,853181,248239,326227,167270,204235,352241,662196,904249,630189,727200,661297,517248,324219,810208,182239,647228,884206,696182,864200,434216,790249,718243,718188,6328,523,24459.46%

This table can be downloaded as an Excel table below:

 

5. DADA2 Amplicon Sequence Variants (ASVs). A total of 8695 unique merged and chimera-free ASV sequences were identified, and their corresponding read counts for each sample are available in the "ASV Read Count Table" with rows for the ASV sequences and columns for sample. This read count table can be used for microbial profile comparison among different samples and the sequences provided in the table can be used to taxonomy assignment.

 

The table can be downloaded from this link:

 
 

Sample Meta Information

Download Sample Meta Information
#SampleIDSampleNameGroupAgeGenderBMISmokingSymptomsMouthUlcerPainfulGumsBleedingGumsLooseTeethToothacheDentureALTASTHDLLDL_CalcTriglycerideCholesterolHbA1CDiastolicBPSystolicBPPulseRate
O1O1case29Male38.02nonononononononoNormalNormalDesirableHighNormalBorderlineHighNormalNANANA
O2O2case25Male30.3NAnononononononoNormalNormalDesirableHighNormalBorderlineHighNormalNANANA
O3O3case30Female39.98noyesnoyesyesnonoyesNormalNormalDesirableBorderlineHighNormalNormalNormalHighHighNormal
O4O4case29Female35.22noyesnonoyesnoyesnoNormalNormalLowBorderlineHighNormalBorderlineHighNormalNormalNormalNormal
O5O5case32Male32.74nonononononononoHighHighLowHighNormalBorderlineHighNormalNormalNormalNormal
O6O6case30Female32.76nononononononoyesNormalNormalDesirableBorderlineHighNormalNormalNormalNormalNormalNormal
O7O7case26Male43.43nonononononononoHighHighLowHighNormalBorderlineHighNormalNANANA
O11O11case29Male33.35nonononononononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
O13O13case23Male32.55yesnonononononoyesNormalNormalDesirableHighBorderlineHighBorderlineHighNormalNormalNormalNormal
O36O36case30Female31.73nonononononononoNormalNormalDesirableNearOptimalNormalBorderlineHighNormalNormalNormalNormal
O38O38case28Female35.46noyesnonoyesnononoNormalNormalLowVery highBorderlineHighBorderlineHighNormalNormalNormalNormal
O40O40case30Male34.6yesnononononononoNormalNormalDesirableVery highHighHighNormalNormalNormalNormal
O45O45case28Male38.41nonononononononoHighNormalLowHighNormalBorderlineHighNormalHighHighNormal
O46O46case20Male33.76nonononononononoNormalNormalLowOptimalNormalNormalNormalNormalNormalNormal
O47O47case24Female32.35noyesnonononoyesyesNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
O48O48case31Female33.06nonononononononoNormalNormalDesirableHighNormalBorderlineHighNormalNormalHighNormal
O49O49case20Female31.09noyesnonononoyesnoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
O50O50case20Male30.91nonononononononoNormalNormalLowHighNormalNormalNormalNormalNormalNormal
O51O51case32Female35.83nonononononoyesnoNormalNormalDesirableBorderlineHighNormalBorderlineHighNormalNormalNormalNormal
O52O52case22Female32.9nonononononononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalHighNormal
O54O54case21Female30.69nonononononononoNormalNormalLowNearOptimalNormalNormalNormalNormalNormalNormal
O55O55case27Male31.68yesnonononononoyesNormalNormalDesirableVery highHighHighNormalNormalNormalNormal
O56O56case31Female35.39nononononononoyesNormalNormalDesirableHighNormalBorderlineHighNormalNormalNormalNormal
O57O57case29Male30.16nonononononononoHighHighLowHighNormalNormalNormalNormalNormalNormal
O58O58case21Male36.07nonononononononoNormalNormalDesirableBorderlineHighNormalNormalNormalNormalHighNormal
O59O59case28Female42.65noyesnonononoyesnoNormalNormalDesirableOptimalNormalNormalNormalNormalNormalNormal
O61O61case33Male31.18nonononononononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
O63O63case23Female34.85nononononononoyesNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
O65O65case32Male42.86nonononononononoNormalNormalDesirableBorderlineHighNormalBorderlineHighNormalNormalNormalNormal
O67O67case26Male30.56noyesnonononoyesnoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
O69O69case25Female35.64nonononononononoNormalNormalDesirableHighNormalBorderlineHighNormalNormalNormalNormal
O71O71case26Male38.27yesnononononononoNormalNormalLowBorderlineHighNormalNormalNormalNormalNormalNormal
O73O73case30Female46.49nonononononononoNormalNormalDesirableBorderlineHighNormalNormalNormalNormalNormalNormal
O75O75case27Male31.65nonononononononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
O78O78case30Female31.4nonononononononoNormalNormalDesirableNearOptimalBorderlineHighNormalNormalNormalNormalNormal
O80O80case34Female31.46nononononononoyesNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalHigh
O82O82case25Male32.55nonononononononoHighNormalDesirableHighNormalBorderlineHighNormalHighHighNormal
O84O84case30male47.82nonononononononoNormalNormalLowHighBorderlineHighBorderlineHighNormalHighHighHigh
O86O86case25Male39.08nonononononononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
O88O88case34Female39.68nononononononoyesNormalNormalDesirableBorderlineHighNormalNormalNormalNormalNormalNormal
O90O90case33Male31.57yesnononononononoHighNormalLowHighNormalNormalNormalNormalHighNormal
O92O92control24Male32.46yesnononononononoHighNormalDesirableBorderlineHighNormalNormalNormalNormalNormalNormal
C14C14control25Male21.4yesnononononononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
C15C15control31Male19.74noyesnonoyesnoyesnoNormalNormalDesirableNearOptimalNormalNormalNormalNANANA
C16C16control25Female19nonononononononoNormalNormalDesirableBorderlineHighNormalNormalNormalNormalNormalNormal
C18C18control31Female24.65nononoyesnonononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
C20C20control26Male20.21yesyesnonononoyesnoNormalNormalDesirableHighNormalNormalNormalNANANA
C22C22control27Female24.27nononononononoyesNormalNormalDesirableBorderlineHighNormalNormalNormalNormalNormalNormal
C24C24control22Female22.13nonononononononoNormalNormalDesirableNearOptimalBorderlineHighBorderlineHighNormalNormalNormalNormal
C26C26control28Male23.63nonononononononoNormalNormalDesirableHighHighBorderlineHighNormalNormalNormalHigh
C27C27control25Male21.53nonononononononoNormalNormalDesirableHighNormalBorderlineHighNormalNANANA
C28C28control26Male19.94yesnononononononoNormalNormalDesirableHighNormalBorderlineHighNormalNormalNormalNormal
C29C29control21Male23.66nonononononononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
C31C31control23Male23.16yesnononononononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
C32C32control30Female24.74nonononononononoHighNormalDesirableBorderlineHighNormalBorderlineHighNormalNormalNormalNormal
C33C33control33Female22.64nonononononononoNormalNormalLowNearOptimalBorderlineHighNormalNormalNormalNormalNormal
C34C34control28Female23.38nonononononononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
C35C35control30Male24.61noyesnonononoyesnoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
C37C37control20Male21.11yesnononononononoNormalNormalDesirableBorderlineHighNormalNormalNormalNormalNormalNormal
C39C39control24Female20.7noyesnonononoyesyesNormalNormalLowNearOptimalNormalNormalNormalNormalNormalNormal
C41C41control33Female23.96nonononononononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
C42C42control21Female21nonononononononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
C43C43control33Female23.61nononononononoyesNormalNormalDesirableBorderlineHighNormalNormalNormalNormalNormalNormal
C44C44control30Male24.7nononononononoyesNormalNormalDesirableOptimalNormalNormalNormalNormalNormalNormal
C60C60control26Female18.68nononononononoyesNormalHighDesirableOptimalNormalNormalNormalNormalNormalNormal
C62C62control27Male22.38nonononoyesnononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
C64C64control22Female19.95nonononononononoNormalNormalDesirableBorderlineHighNormalNormalNormalNormalNormalNormal
C66C66control31Male23.52yesnonononononoyesNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
C68C68control27Male24.19nononononononoyesNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
C70C70control21Female21.03nonononononononoNormalNormalLowHighNormalBorderlineHighNormalNormalNormalNormal
C72C72control26Male23.47nonononononononoNormalNormalDesirableNearOptimalNormalNormalNormalNormalNormalNormal
C74C74control32Female20.73nonononoyesnononoNormalNormalDesirableBorderlineHighNormalBorderlineHighNormalNormalNormalNormal
C76C76control31Male19.5noyesnonononoyesyesNormalNormalDesirableBorderlineHighBorderlineHighBorderlineHighNormalNormalNormalNormal
C77C77control26Male19.67nonononononononoNormalNormalDesirableBorderlineHighNormalNormalNormalNormalNormalNormal
C79C79control30Female23.71noyesnoyesyesnonoyesNormalNormalDesirableBorderlineHighNormalBorderlineHighNormalNormalNormalNormal
C81C81control33Female23.12nonononononononoNormalNormalLowBorderlineHighNormalNormalNormalNormalNormalNormal
C83C83control23Female24.31nonononononononoNormalNormalDesirableNearOptimalNormalBorderlineHighNormalNormalHighNormal
C85C85control32Male18.52nonononononononoNormalNormalDesirableBorderlineHighNormalBorderlineHighNormalNormalNormalNormal
C87C87control25Male18.52yesnonononononoyesNormalNormalDesirableBorderlineHighNormalNormalNormalNormalNormalNormal
C89C89control34Female23.81nonononononononoNormalNormalDesirableBorderlineHighNormalBorderlineHighNormalNormalNormalNormal
C91C91control31male23.25yesnonononononoyesNormalNormalDesirableBorderlineHighNormalBorderlineHighNormalNormalHighNormal
C93C93control23Male24.73nonononononononoHighHighDesirableOptimalNormalNormalNormalNormalNormalNormal
C94C94control25Male20.26yesnononononononoNormalNormalDesirableBorderlineHighNormalNormalNormalNormalNormalNormal
NC1NC1NANANANANANANANANANANANANANANANANANANANANANA
NC2NC2NANANANANANANANANANANANANANANANANANANANANANA
NC3NC3NANANANANANANANANANANANANANANANANANANANANANA
 
 

ASV Read Counts by Samples

#Sample IDRead Count
NC23,966
NC15,866
C8915,273
NC318,422
O5722,696
O5423,472
O9223,556
O8424,433
O6525,781
O9026,572
C7728,010
O5129,709
C6430,114
C4330,141
O4530,737
O5531,116
O6731,748
O1132,164
C3132,560
O8633,445
O7134,024
O634,127
C3734,979
C6836,331
C7637,027
C4137,120
C4437,859
O4838,175
C2638,569
O6938,796
O438,890
O139,020
C3439,034
C8339,117
C2039,131
C1839,654
O3839,682
O5039,982
O3640,017
C7240,156
O6140,243
O4940,375
O5840,752
O4641,044
C3541,805
C6641,805
O341,818
O542,574
O4042,586
C8742,975
O5942,994
C6043,163
C3243,807
C1443,998
O6344,124
O5244,890
O4745,283
C2845,349
C2245,410
O8846,127
C8546,137
C7946,583
C3946,947
C9447,333
C8147,697
O1348,405
C1549,384
O749,937
C3350,180
C7450,685
C4250,740
C7050,795
C6250,967
C2752,896
C2953,035
O254,234
O7554,685
O7355,809
O5657,228
C9358,783
O7859,558
C9160,335
C2461,567
C1663,206
O8069,332
O8269,925
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The close-reference taxonomy assignment of the ASV sequences using BLASTN is based on the algorithm published by Al-Hebshi et. al. (2015)[2].

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310a
 
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences - the FOMC 16S rRNA Reference Sequences version 20221029 (https://microbiome.forsyth.org/ftp/refseq/). This set consists of the HOMD (version 15.22 http://www.homd.org/index.php?name=seqDownload&file&type=R ), Mouse Oral Microbiome Database (MOMD version 5.1 https://momd.org/ftp/16S_rRNA_refseq/MOMD_16S_rRNA_RefSeq/V5.1/), and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 full-length 16S rRNA sequences from HOMD V15.22, 356 from MOMD V5.1, and 22,126 from NCBI, a total of 23,497 sequences. Altogether these sequence represent a total of 17,035 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) [3] was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010)[4]. The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:

  1. Al-Hebshi NN, Nasher AT, Idris AM, Chen T. Robust species taxonomy assignment algorithm for 16S rRNA NGS reads: application to oral carcinoma samples. J Oral Microbiol. 2015 Sep 29;7:28934. doi: 10.3402/jom.v7.28934. PMID: 26426306; PMCID: PMC4590409.
  2. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000 Feb-Apr;7(1-2):203-14. doi: 10.1089/10665270050081478. PMID: 10890397.
  3. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.
  4. 3. Designations used in the taxonomy:

    	1) Taxonomy levels are indicated by these prefixes:
    	
    	   k__: domain/kingdom
    	   p__: phylum
    	   c__: class
    	   o__: order
    	   f__: family
    	   g__: genus  
    	   s__: species
    	
    	   Example: 
    	
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
    		
    	2) Unique level identified – known species:
    	   
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
    	
    	   The above example shows some reads match to a single species (all levels are unique)
    	
    	3) Non-unique level identified – known species:
    
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
    	   
    	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
    	   genus Roseburia; the “spp123” is a temporally assigned species ID.
    	
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
    	   
    	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
    	   the “spp234” is a temporally assigned species ID.
    	
    	4) Unique level identified – unknown species, potential novel species:
    	   
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
    	   
    	   The above example indicates that some reads have no match to any of the reference sequences with 
    	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
    	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
    	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
    	   (But they are not the same species).
    	
    	5) Multiple level identified – unknown species, potential novel species:
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
    	
    	   The above example indicates that some reads have no match to any of the reference sequences 
    	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
    	   However this groups of reads (actually the representative read from a de novo  OTU) 
    	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
    	   closest species, instead this group of reads match equally to multiple species at 96%. 
    	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
    	   temporary ID for this potential novel species. 
    

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=351 reads)
ATotal reads3,528,9763,528,976
BTotal assigned reads3,516,3083,516,308
CAssigned reads in species with read count < MPC029,010
DAssigned reads in samples with read count < 50000
ETotal samples8686
FSamples with reads >= 5008686
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)3,516,3083,487,298
IReads assigned to single species3,352,7863,332,901
JReads assigned to multiple species103,739102,770
KReads assigned to novel species59,78351,627
LTotal number of species449242
MNumber of single species336202
NNumber of multi-species148
ONumber of novel species9932
PTotal unassigned reads12,66812,668
QChimeric reads569569
RReads without BLASTN hits00
SOthers: short, low quality, singletons, etc.12,09912,099
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyC14C15C16C18C20C22C24C26C27C28C29C31C32C33C34C35C37C39C41C42C43C44C60C62C64C66C68C70C72C74C76C77C79C81C83C85C87C89C91C93C94NC1NC2NC3O1O11O13O2O3O36O38O4O40O45O46O47O48O49O5O50O51O52O54O55O56O57O58O59O6O61O63O65O67O69O7O71O73O75O78O80O82O84O86O88O90O92
SP1Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;asaccharolyticum1114343271063226662526146012644401715128342935711318895241119126925255717635251687368495017142753031707417453938613116264578953810120602254585659241222754151246822356498352022659188
SP10Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;infantis321425122741055315822170713533447317296680879332374426524144618231586281051470138514699931228602439314749577155178862530255237325357221114168041695416181191113888531887709123518912004977023652591741178981151278113313131016264617041019147980414167718105304491033793174127445264752
SP101Bacteria;Saccharibacteria_(TM7);TM7_[C-1];TM7_[O-1];TM7_[F-1];TM7_[G-3];sp._oral_taxon_351117505081091278017115346071323287064122141041843768144434622000191651830185192419129173160242104711786127101463411815604811763411212201913553265131301727782991964157583345162
SP102Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;meyeri000700001708002000330001000279008000080000041000226970770080056200003800000000293000000000000180590000
SP103Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_2750225033080000004600002000000000230000000000000001000000008011120037350251000001707300240000370000203700
SP104Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_47827329202206111452821620128041800001220500161177006204606401605902419110924024646921440311001718799923606444716101982675004
SP105Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_431723463917188011922888231584320430985244863894639814001816181689364264124898055752268401240191138910316612452402622326491266407384811730240814037642655541547252239079192161856306294471708219293215386100119042701071446811841956983034417875833295071521078336224
SP106Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;adiacens212164539661484139021332291520120697598569310785192542332113819888261305328248911368081261184648975761021108977333066796933322951718205117291077644941235812916474761586903332689306689718512523487875348326272150622005972138905123712635755641341240388116661951187163265319616729361113751421881452
SP107Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;haemolysans221871596581721985593862791131117160553688444804513825431722713550161546853143143122191314282731862119449773921979125467149852201620991512018038118155123598227319832467257123213963252654511710511097177177715107324142
SP109Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus111621212545162325318243032412780111458234065197173104841741697431113100491885327026112682525131312192017811115171082016106541654279214178788410182240041264
SP110Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;haemolyticus0260358045200000700034000000040204000000003000031048290051001941459100000170023600300240110215003200220
SP111Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp._oral_taxon_41710863017011389272673708554973077316132413272046716123116241312351126132105618605687530399878126289126124012013726438661470355713617345782941293895461134104451002825929829102673471362149120453076110113441108399917
SP112Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;histicola1649872356752921563125843151552984810148812207931068361027487190268103115733931159961062745111110697711125396562101261119208136816218701055782292215849148132721176989822717674464120215801871761441319778333512351209131482381175729448210741318235125451937
SP113Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;elongata4212045310202540083135409740454000037517001200021130360001601057027110024124765951716290223110026412032500200007000
SP114Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;saburreum5500040172700450963901141045116305019006063400004300040000200302029551901110001002016200800061617062000
SP115Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp._oral_taxon_212010613190680341220107122542667616028416122027273961607023701800080127492104924301342362340470216204005602449728622401030
SP116Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_278121920981606000182430110811331001001148121000203800212390422030530541522821680037014216178822002000110001057230002027820269110000
SP117Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Ottowia;sp._oral_taxon_89408000205001200001200080400500000000002020692000200000000001447096022202644800000079600000002300
SP118Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_4233770011081302000729026510000149040250000048643810860303236130160000390280001859000338117022400425188004712145013600007219127800164000001209018700021400
SP119Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;denticariosi40000004900014700253810007163137461800000000000016001762530510000428370131572110006004036718001699300158114000303420006900005128471770000013
SP12Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;atypica551601939831537081703539017709413375173769337102344619212922351274293998235481152108413892955915441362992539410173137141214743685229499453645179125734191429981117421129125044941159321674571932268912262948150836129724993243300410699411401213744347
SP120Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Megasphaera;micronuciformis9823371422221063503165035835682511725224836433111325659391053891793421132173455133584828705614100377484101740289829379672483651327223217423117160102132198552232341688612204302526612835738581802929
SP121Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_4430000604700010102218004038200000613000000240000000463000000000835006700000300020000426840000001585000
SP122Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;sp._oral_taxon_169160005261200101246620231401406205140032740919508215045440016500017202918110307029310802401136576107522712224508002316370213150
SP123Bacteria;Actinobacteria;Actinobacteria;Corynebacteriales;Corynebacteriaceae;Corynebacterium;durum212510772510007932092510122384114230284178549438143209016514000081427055010080016170256149210571570809619053210364410710565
SP124Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Eikenella;corrodens083280003503903352026100217370011032361865247210000320021412021301016202020181500716521403247032021550330
SP125Bacteria;Saccharibacteria_(TM7);TM7_[C-1];TM7_[O-1];TM7_[F-1];TM7_[G-1];sp._oral_taxon_3521191234100501167502040129995925758019836316819019319361131986611611738411625213014108153871195176942335743633645611305826201975318824478721564331410115112657799283102514666570542733022969161759508285126155260188397
SP126Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sputigena25305600100800010042061020401000003603121050130000002075120000302186616422023082205582240008825000600
SP127Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;sp._oral_taxon_91700000042603030788000830830004200842000018204000000308920134109220348032002030042370322114210354009422145205010020
SP128Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_0700120050815326362252747712904601755204928904363435004827524306300368219120080700806115290401019487183640100622443391583008038261326708611085174002724
SP129Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;naeslundii252210015725017140018013192465222202505403738013082011194136811210012110416546419012122919308403831051754113687246122963038039210
SP13Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;dentisani16626435813452384268855238751305153513960428371234848515911877689831190693264612574444812931315729015943863766854922431270338195360011793238158202541348500523301051249442154950616561732231184150244352666109679623597772371134772680745248061570439507515629570288422481011501118358
SP130Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Coriobacteriaceae;Atopobium;rimae178003631065234692181294207136022146812933172284051041361712511012074513526292130512175857359103113645528551126150681791913062966
SP132Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;gingivalis002004600035002000006020025000002070013020700000000900004203645000000220000261200410040023101000000024057390
SP133Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;peroris000000003256130400278928340100400000002700001670020790000310000225900020000266016200000032321130000000030207
SP134Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;catoniae0148900208043200241184024900004820000069060000971783200008000131019338400038143009211049535006151524148609630285301020
SP135Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp._oral_taxon_322040521604218012062364112210261270343118015203802030361340110170100685531398026050181274320431806232092302131756074625110
SP137Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;shahii3410302308936034468050141760027643610239683024202710000045650610111810010025021480496066376159141230221120010523031010023033003845714620
SP138Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;gracilis290055200800000000010700000001302230200000170006930730000233107802321602231302167024000512000000
SP14Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nanceiensis291508612929270204147251931993001421327716328202151103107374921703594121767411227191071053834486179318312691803476783855742068517432076200455387151551086681124865665768127248483232721221713341491191266
SP140Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Lautropia;mirabilis49861141586614451640916221815799380115841121311825246207111438156105227120341016201063235273419736110325109140632586115136597151193520170561011625359446921147712794962792483925437348174
SP141Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;gordonii342316245890867159193123364176055260018274508749314251612676121445311512982020344094033672250521470808491415151977353414679471917763529382881699004316
SP144Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;aurantiaca018004007070108302600016500202644803659182140000002000031602300002150205246282000000003000020003000003013598341300
SP145Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;parvum03020001400000000000087000000002020000300001125000000900000006900000000002000000000026510501200
SP147Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;gastricus000000050609020003130300000000000015652000000000000000000000000000000129000000001160000000000000
SP148Bacteria;Fusobacteria;Fusobacteriia;Fusobacteria_[O];Fusobacteria_[F];Fusobacteria_[G-1];sp._Oral_Taxon_A71000000000000000000207000000000000000000000000800000001010011000000000009000000000000020000310
SP149Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;segnis071000000900000000000000000038000800000002080203966018420760002057981400000004200002400006003600000
SP15Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Catonella;morbi1663753717236148631114135262221270211172710428314586562349233940131057482214107222199030384255194145234038563544186611121711649186010555452184516120163161719183224582239444
SP151Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;forsythia229001121760810330030081082004003396151943400070101422022054028321003801005200022404200000283015205013050944
SP153Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;oralis0182020230447000023031556937030020000000000000515000005101681802809294022203212190200002855230200002000080
SP154Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;flava000000007100001000058171702390000000000000000000001432640002650000300000260230030005001600030000350000
SP157Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oligofermentans017100001100200005000500000000060000000000000000120000000000000000000000000000000000000010000
SP159Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;hongkongensis913001271102132002800542544161070700001561030100422022121200087630140006003001542620054015412171432902051286002022
SP16Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;graevenitzii594396633256477644612332951968366135133125451331226868911639350228310843004028835376145612924879941036951346119061718819332010981772257311132312481007517103951932219141559338601501029025738714545232765038345141320607540652416352934835562
SP162Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;sicca02101200409000370017200370000000009222700000000000000269100000080076701601000037700001200000000000000
SP163Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp._oral_taxon_914000000000000247000000000083003002004000200014000000184180100014468130560000015031000000914300900000050
SP164Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcaceae_[G-1];sp._oral_taxon_0754343481650691802019863311026412486334391713382615864221142651106213643843990345263109120112846768572217714510252718222712196118131566491614478141910577668630109167136109
SP165Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp._oral_taxon_4580364000031100002100100200000000000400000000000042054770203807473240020000001060000000000000020020
SP167Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_8920188000000870020000000000000000005020000000000000016002004000067000000027000000450302100000000
SP168Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidales_[F-2];Bacteroidales_[G-2];sp._oral_taxon_27401006200005250073000721230639365970454620009000970101400021000005820003000150400000021080900021500730
SP169Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._animalis33000193322714211110618102202115146518171424049198865623358000051729711318061266159342171110078112126181419326016955240624
SP17Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_279100443731937320052744386121251189960521832409339528022345304983331455312373069100622885437542762124294341807461515531416412839329484721414952243744801871169931953698917353898182426132094492515034309707892814442722202111659208179911019538366820227811701509308233462683317410633529212103339227
SP170Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;pharyngis000021300000000000000000000000000000000000000000000003440000000000000000000000200000000000
SP173Bacteria;SR1;SR1_[C-1];SR1_[O-1];SR1_[F-1];SR1_[G-1];sp._oral_taxon_87501700375101736082256015231920410330360630321041211188222002312031612944470413262114649076541705243748579310042016948713801553419032025024032034514326190
SP174Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;dianae05000250190000000300004900000000000000000000000004004250120502012009390112800000280024320800020000000
SP175Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp._oral_taxon_20301220173200000000002133600200000000000000000199000131200005000000002000000000000000900000020060
SP176Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sputigena15139516313140515702322501811143031292055270140007280310148410002201937195363231204956901193163950041610014314214618229133304151
SP177Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_30900000021371701130037074481607920155000628602236701910018912522957022102032005002305551640240048248110311032311000023600
SP178Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp._oral_taxon_498000000638000006020224412021019000000540000042002100224005030000010002131300200008120140203010002000
SP18Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;flavescens|subflava174728264910901742299181538138257928255912188191033689108925162341558252944619312792453452801801030176687484200158596209991699010313793294738324464112518004686278829571343204427028914322525172581722583196371168205441422227475205128340218681713122714
SP180Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;infelix0125001440000200100000000000000131000000000000000010114000000000700600000000032000015280100040200
SP181Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp._oral_taxon_513076000020000000200314620000017000000030004000000024000760071308252702901323033300200162020100000400000
SP183Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_057344042251110321572561002336823237263460601624427122301577151162609548691899234551622515018202589134144115342435111851450613331343410184160108108803925119186147102119685193101254176147440296018625
SP185Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;buccalis000000601002001232035438203560025230088240400007302201041004461661600970023100053202301930000000
SP186Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;rava1020000106652018028005251002390001800021100740140503402910020179295927178721346226023945000200046913020203090100201922120
SP187Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;sp._oral_taxon_1700000200000000020200061622020000706000000096000029508000038202001000520926185000005042851000064
SP188Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;veroralis000023030000003002902000065270600050020000050000600031000200004790001312060219300790000000001140020
SP189Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;micans18590049040622002700088130002044125062001000000000280000000002001133001702500180260020000400090000
SP19Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;umeaense107028218513431512142010132620221431365928831682810100153089057220242524185315920421057101601325161811147052251251711522407729826221611228011540553291210571728233
SP190Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_07444252193836352016729413150043651333814849524342027316129193775813846438659874445128420622253281839701123491112415745248112007502181001771041242225921452051312151608524164376118306919732136189073
SP193Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;hominis7490392235204410223300104241048804214707030212220277700074311304064561194801066920216411088223650102201030200
SP196Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sinensis184700000004200500002000400003001741100000019016200600006714000050250000000000000001000049000120020
SP197Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnospiraceae_[G-3];sp._oral_taxon_100021030470002332141430014022000133001220150000000200241530014030000002011000000000001000000030800000314523000
SP199Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;intermedius203190231466278272312819724043208422929228001327486037100100616552363817450121912135006202311333831281013201127332319242218007548
SP2Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-1];[Eubacterium]_sulci652138538101179165633493190507941321391381871215261149245271483439605796646157743456876121815484991649115419133147781152321912345177597019221158182145536958204510108718790178568417112037310154
SP20Bacteria;Actinobacteria;Actinobacteria;Propionibacteriales;Propionibacteriaceae;Propionibacterium;propionicum01801338701472037360062618210628494023630197334614116329000140404416502061888221267080442901120538445110012221041790270
SP200Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_305800000001123090000202701305003020042123444204013013612012070243800700003016300000530232500393615100002908
SP203Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp._oral_taxon_30870610910243113116813618232019041914207652256143864910810835272362292432211804730155267345680100144813922483748911582519298565152165110933724105305114288192938802127201131091017173185105118763
SP206Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;oris0020320200520570606260003022300782420070110944400349725300000033400406500038008100221094490100020
SP21Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp._oral_taxon_2181220000110492881009015007172202080533312560425000301703000020112522406470021783722303000608452301100000633720240022402230001271210
SP210Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Micrococcaceae;Rothia;aeria6991668978077230669491351217015021243417601521842172986351952745382184018152144783801525264101111644673373841672056132336761636875113314429211655964784145652976291097449148302123744115507747876963
SP214Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mutans00000006111300000360011103060020000223900000005000227207330000002000000460000000240003504000003
SP215Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;hofstadii0000100011000420001401063230426024053324171320010000133132000500349712000000245213005000014623000800
SP217Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_285243860000330003432001100300300000232057950000000000000000750000000520020001600000200604002501200000004780000
SP22Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva674107116021481801056301579206011101146754101329256383036135841721435228133827822230214021091017331593300420154351685454661320724259677512979630201232532141123350216847610923
SP227Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-7];[Eubacterium]_yurii_subsp._yurii_&_margaretiae03764000630728070000500006010200300020000402000000220000703217004606457044006327104007012700300
SP229Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;sp._oral_taxon_0360000000200000000000000000002002000000000000202209000000000065200070170231900600170002000000000
SP23Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;anginosus101500244154669260856012596131621411161061711536126192923118481225334250334926283161416007122111183002422104631619502613111550322492150321312
SP233Bacteria;Saccharibacteria_(TM7);TM7_[C-1];TM7_[O-1];TM7_[F-1];TM7_[G-4];sp._oral_taxon_355030002020000000000000000390001300000020000000000000000000000000000000000000049100000802000
SP235Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;sp._oral_taxon_01800020000110000600023260000000000038300000000000150183302035000220002903004000340500000500000000
SP239Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;sp._oral_taxon_286490000014010184212349007621300306753010024000020245529030427520200020400228350000001080022020524000001043020
SP24Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Butyrivibrio;sp._oral_taxon_45538530002545619040000292234041600220310033200200752001718530010330502052060310406000206305000267551070052730
SP240Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-9];[Eubacterium]_brachy366301502399110731600419314062001102620030040001131101100656824040200604137300206210000200505264166001903
SP243Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._Oral_Taxon_B4301190260000000000000310000016000000000170025000000900000000001715280010000014003000000500073000350
SP247Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_0564420319220180101719087236005028347431601122318009842295309100020102592200512001760176802336149025850014632010107301200
SP25Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_13610020250919116242470215002247923005510000640025448253140011342782028802501018395550193118142848700408639484071019392414800021072
SP251Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-7];sp._oral_taxon_922016600040012045000000350410042700101700000000000000000000000070060000000008000000020002000080300
SP252Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._Oral_Taxon_B660004000114240000008804036005012009002100000000000000000200000005800075810600059000030020000000000
SP255Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Mogibacterium;diversum65743402601167172205812451973327280583171189615991025949292331613434213310910011913423524428444137252324180539910436315835431219728590571299410312831916918063875615813769741916912161282196253169536245211
SP257Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Scardovia;wiggsiae2002320002000003250060230190030500700040040003000200000001535102003963021507276490402000001002
SP259Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;micra3376208573521054051688514661764513439002267246833275213418031231441781700624843743244310421041236425041420226317302531142294281561947231537931765
SP26Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;lingnae_[NVP]2273736713440156226150974258015597172676228987138128146311235013177921945336119613974378110166222453405392884725125957743255139501922718376104287776106314884883035913027144231949936535649100773412858258292273514929476215
SP264Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-5];[Eubacterium]_saphenum000016000610240050203428400120001300028000000040900006000179022902002070000325000000022600000056000110
SP266Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_3040060000140500517000056300000004000000000000021305000056053072000000000070060020005500000028002320
SP269Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Erysipelotrichaceae_[G-1];sp._oral_taxon_9053160000300265520202803020000026303200020007550000041900220020012500200021002000003420400020000
SP27Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp._oral_taxon_2154451934359170576272419634222157174424957024421180376452610067158223393547362936215628358373625084463411136585141161181648442520121117256193521181494538535215980861063455652382249111711359817060496
SP277Bacteria;SR1;SR1_[C-1];SR1_[O-1];SR1_[F-1];SR1_[G-1];sp._oral_taxon_34543694009150120210911012800961038640042407425250020303218011665454243020431034137351422901743404420014000742023922205740194270000
SP279Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;artemidis20004160006300040000000000000000003000200000000000000000000000000000003000000000000000000
SP28Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;sp._oral_taxon_180438301731946665568986541122653109312206812912452549152012114008021849523132425297078039182471492698516469841367126541509151118774820385298061313223585354941661540544924956201289696380195116492883439012538769542172562255362011154608337815953692634037426629156
SP280Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Olsenella;sp._oral_taxon_807020301100416000920210169320220000087063002030003030404034402001912000714070150005986500028190401050
SP282Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;sp._oral_taxon_1711320323520901500000511042020040000000003915001334000374351600032033060130000160761503001200650530011044
SP284Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;fastidiosum0209006500000000600004500000000000000000000000000431000000000000040000000000000400000000003
SP29Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;scopos021860000139000003900700006081000000000000000005000000002706000000065000000005300000017000000000
SP291Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Mogibacterium;timidum000060019001106042018720020004340211818002015000910000013645260000000000043230000302316000130234003000
SP293Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pleuritidis0900000010200000000157002006700002000000000000000003300004000350002105003203016530400400000000
SP298Bacteria;SR1;SR1_[C-1];SR1_[O-1];SR1_[F-1];SR1_[G-1];sp._oral_taxon_87401082815678514627055137001601401112040020435500800111203090000017923982202143022031007116420000611509780026000031270
SP30Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis7136005671810170021502635680130497054501061005315706670018309210321131290007330199914703802832917389430042111581998017722400200521309811814700890001411443004
SP300Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Dialister;pneumosintes024001060009000002005530000000034000400000004000000874030000201200300110000000350301400300000002
SP301Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Micrococcaceae;Rothia;dentocariosa6700134377436135255515324736598519105182341130954819317564118519361960355093981131012647276424126306100432976122361493352139687510026361272537019542281367384409551951311701222951139832753603887272665118641348166
SP302Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;sp._oral_taxon_4480235356180774021208221185346317516680924221701305400926000131441052500990017320500350861066224210465001226110190000109
SP31Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;sinus7516147771432857356412541028831416441351496331737377314118717154564459172107702528827165262013329914243765478899411110959201933715217218126113511023122411388794655743036252942883118128181316125943996
SP311Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;johnsonii1560086014948019040011710444986272030202004015320001335027000072653070203001122580005000612000552
SP315Bacteria;Actinobacteria;Actinobacteria;Corynebacteriales;Corynebacteriaceae;Corynebacterium;argentoratense0073270002005000000070390115000500000006000000040000000000080003646215923000306228168825050000600000
SP319Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;mucosa32000002300300350560000300002469101001402083202000000011700004603730007062045000320560160400900010060
SP32Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;showae069300400032047005500110200087002000003000020000000005000150006008000000000003100101000002000200
SP325Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;oralis40001500022002456000650917406033517321941070553080014092171030222301506104233426050316922271803005053030006
SP326Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinobaculum;sp._oral_taxon_1831007140050800405200211144032140901721632642550029016247100313503332256000410004104432100004211915000093
SP327Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Cryptobacterium;curtum0000100015028702000032520002057015000280000503290000004000002000017200123124010003133190000030000000
SP33Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._vincentii0873344045610106061060262856511542902070287161131905114613022552701134684524148151238317416239361680353342054221462831231191101042182223170
SP331Bacteria;Gracilibacteria_(GN02);GN02_[C-1];GN02_[O-1];GN02_[F-1];GN02_[G-1];sp._oral_taxon_872020000002070000030073000000500700000006000000004007030000820210000000200600005000609600200
SP34Bacteria;Saccharibacteria_(TM7);TM7_[C-1];TM7_[O-1];TM7_[F-1];TM7_[G-6];sp._oral_taxon_8705516301813174441313547215410112374213834316211151344953112784215331014474491622314433503281320181222138367041180341184901070451384124298001624362
SP35Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;parvula_group255620566570188546327115621684611560226032092744115421722032073910130722567018167647585494815510191782295037463533682538165910592166871107694230362952101090322916913881672189718891925100926801925237511202023340518182698161753109073151278184197719412037218226651000238101111262641336140513248825833631930375176249
SP36Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oris54180127919917191231410010081871906020161207301120505125921100024172906121810001014326434063532161021388342103010101074853121630
SP37Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Micrococcaceae;Rothia;mucilaginosa569312375175801148501385425951315340936738748425136156873321213644416670271811147896329661746923151508915582546812391704936530115186161569174618561095914281359417694171631838816052109240741575348403148783833957932405521486514659223631521111342644433906221784819996703832354782329529925012238812521284565210572327613543651285057025835054203522162496
SP38Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Dialister;invisus033044500819331833136746354660272389211239327222165108641471224001314141461351014451113871021209511072705886511176718263271443141620
SP39Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;odontolyticus118823686210851164666168929045210536821521026384117827353025670875125555072826042134491610797744984001846882295837404571717261705292103340826332420227717458854163261321718043514396159214356553154059550765110741883274405314514203646777585254781518315113442168201250
SP4Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;sp._oral_taxon_1721475731471579310802371082631346926815528936125117635225762714450623743211471342184131520404051161562411682166131260361619299814295763787917184118460449832329847212127832733656522224215439121771238888510593170372
SP40Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;sp._oral_taxon_1757311510837122163580810364513311646460534370079026321019493700330815741680172682427089089510737111575043392594424114663330036261836492091930810
SP41Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;morbillorum1484716039415616672382511129121132581766202126441530509735685155432311746730301162814067356732645014151348597384579219541019211794468111131259101235152471725939314434321519
SP42Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;tigurinus4472082442861266111122338949317668117614284592243109245347162421317319211588364004622588322381224130384686713363721132112412886917503920515583115229237774122518513439765843738669033024
SP44Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;denticola0116002330017030041611110011113015008000052430550000500171000011605265194203113859170103596044280136225102020402000000
SP45Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_1494002340101161393066160170449171324980036212010010398396509104210102200025981039512282864293111176234923626825904203386177015415280123461389124181011039611
SP46Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;gingivalis23811219014150472190512800013720942270170220652237020220487237005541432651026051403331034620091521205600082233258944177810
SP47Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp._oral_taxon_221270010031253586039120202558329291186120751030212127309340623200052351960447333317212097131145241292261057330321111610110603516219008044475
SP48Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcus;stomatis1102855978353910327821841255319270553364413817461951064620190139101505489701342612763341814318201321071911351774614532283489321481059203023112724094238212730922621012437652493222912117493
SP5Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;parasanguinis_II11471423164630915336821170702114112266243115144265475820923081342118576629640850174348797228113524254681791422265315300158195891492312025892859599463216739281183461372537571145643664427413987538046311227753347562381036181796802241310370133188849299726
SP50Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_0640310757367720781180673018908067188501548001000308000613308110802300533095157030121420119201631238222002751870041957461301559558281911812142930789638102400704258411873019434760312018211530119
SP51Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Coriobacteriaceae;Atopobium;parvulum48334187129491331880238196311619020369313189286183481341471002355232211910960193104383217530334425223714576197241121343472382124910245182852962758345563910615184991852442136661277520496140167312242714104150151332431538823141052432536187467
SP52Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;salivarius555662222981250153645942328211035705271394130154031627297188016315917510662472484011912421543321140123042161630473623671110481331331962616482948824333210157806455579001960102120291104368713700152503435123150823316880238448146331154926595339845911126881929684124
SP53Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;elegans1260958721581817320812445112151802614925992623512191843427152088205380165745682428859598414081828397296339321141512354238026111278101174210541005858403735375088966485268217773220610762812851
SP54Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;sanguinis11501121435364943884993192411330157458229882223261269608192228736874528735347740128621225135122186058113184111221251200473716336084685296149151293438624421873701503978221365433112206082462573059513136811434483144341370327144127454619118114178145
SP55Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;endodontalis01367002240002401305718890532291844007500232821603292000043017980600300012117997034497112474385504682921273503468414160446202468020293014242138510
SP56Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Filifactor;alocis01190006484929910515001214835820001043405000500013013370590416017228411154204180001140024533320400115224100220174132029132
SP58Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;orale93109070013381432114727142301682232246124843140500670361016221813452120412126405151931134401040171217070212026111841600019797926765500343316
SP59Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;vestibularis00001060433075090000000000000000000000000002100000000168800000000000000000000000000000000000000000
SP6Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;australis58510521641691353736286533216457701908306276011768953024310327146701694828825341211300370434470100725471334817115311741107337703520325116615629841329105273683720121017520013636182268010102522493711852061359121313020236183
SP60Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_06175370760515766421708573463180372159366856192817921906318301031142120857081612111969358716381624044257065012480163721040230224167118521879773888667860162357496454459303882151463642664374682640572936822271858066271904113292
SP61Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nigrescens56200606040103116311538305203000152191575530931810000394240028612192066126115464701100500727906702020019572540020
SP62Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;intermedia6300000120602000000402017900000910000000600000403000011003624300188980002000000112000000900000461900047
SP63Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;denitrificans014000000030016603408140044300007000000514203500000132015211320008220318034010702000390006232014008200000
SP64Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp._oral_taxon_473026502612261204217910993031825201202400152418603000680078030221931050101717903718937454015575701910089504120250313891057034200223925000
SP65Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;constellatus32900130003412200291520493470513007256672725774280400023177260304058316030614013599062405552817896201303951500530411413
SP66Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinobaculum;sp._oral_taxon_848000145280735400016002015140202081220001200042513026800000026401004214211970317156102830417197200717385311003520
SP67Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Stomatobaculum;sp._oral_taxon_09716672048010930102014303743411211802538111284393628111311000132101402623611200599101322860242221723513111260502353541720530835441026271584913243
SP68Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parainfluenzae425642182723644530919452031310222932702557987541041143594991591066231119917033173459118721141811326618936722447089275546711261888781444223173742043019745114513693951471457837209293774214117183313014392142108335123711163344279109303151823266658261
SP69Bacteria;Actinobacteria;Actinobacteria;Corynebacteriales;Corynebacteriaceae;Corynebacterium;matruchotii180001128016657701013008117863150240051520452201627210510830222065459930130300044010246150613110244818610442911205100110520022
SP7Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mitis36020383922384450314639243548105751153333953261337992777487649240195904069860143915645281283519283460733362828833819538115451953376387755641645921032993949151522112009291198941226017813051740185673334646033176887146631006158872389167426715350723223787744633086232501632396262029575485213623210305036
SP70Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Solobacterium;moorei29022643616028262911078624995162232143170821012361425285312772017961148203302297196794228241297726610881935191075826221053113156342762362873314477177869451566891275631123215313081162516246316821731664169416572263721152841175204158
SP71Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;salivae30337132752270368105320738567640606318959019253882632608550201052442502931461595841276435963435052929149726167208211526206847823644219551112022531281188769431161502201991411485752282976368721439442631705099
SP72Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;parasanguinis_I821012751164866511224010695623625712200133416023517270229872101021404187282122441312010823360138073315083071142553141157472331201180447150797163149231021621171665367415419923366910445122187493886630631826416163107292407107143
SP74Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp._oral_taxon_22501550131565150007819501614129490120740272735002923172405805104667200004950270502206230610322207204052040402
SP75Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;cristatus814662763971610384753528191405110891602206409136420310021114716945313936032271763432703108103535039514412411718924130119489981601722155238444167775075014316640934421855520633024328911490011412202721981349329120120738514135544266069
SP76Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis1022853256664638818227826811181258364117198101118111015173811619812581911818033875569538743979393237824243705426061871413204664346014114804816331508814337141105845168771384092012391471396632223412162552741212311011514234
SP77Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp._oral_taxon_512040001200410000020000007500000000000000000000030000710000012200000000000001609000000000000060
SP78Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_314021800000407252082505000213801014962005626601080038733000500088041026406306001099745316300128010041290005800888129100610001774050046600147
SP79Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;gerencseriae041000240820000001017962029880710000000242272020011027943623536220004700023013422566016000451467220620
SP8Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_0585928413051449124581542924073692867901841104021653341001236707063581797404898631514618151562125844338152027403638793912012038329215018361464533106104067131652221615502985729900201211302714781573735417353381612414120
SP80Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcaceae_[G-2];sp._oral_taxon_085355629430300517121707649157101574418530438113110077132040961619984332901323301690109128231954912274319441828572030503034421461287722251930119393260383877204621926
SP82Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnospiraceae_[G-2];sp._oral_taxon_0966618034381773801401342836125103531436070237044575258002165482522382232006623035963430150334224016890114934205266962384031122205035813553398101820451169289204775217422239810
SP83Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;noxia63460211651035923070083131180281302011628011172023010302169000922345013024020560371071373602019237626202980028046002060
SP85Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Stomatobaculum;longum54000121089701902500411400387415603100002280501070016131509600162136051001110380113133594310021438983021311184300012021
SP87Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;sputorum019225111460174243711820350114327540290111600073508003860680913429433250822124042032000032022195460007680241723915304134
SP88Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;sp._oral_taxon_780034028520225002026864210817985422001271003002000620700023006361964366002916514672056015137304202750171106000751701460000
SP89Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;tannerae625104654170411972554412820224116200583144036195366181002195730980521005252200364577589311821504371865611548441520032921734217221080129111025413321
SP9Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_0669936935401897955218684027575080714413114101222641658957723440279153170161232112165360407101089394342426471001874288375012010136280126839267694037125128515438366704682282201981131149672971073257325214226101
SP90Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp._oral_taxon_39201400183736901000744042526313310280520189000001901612000010305500230888050200220040110020412325401500900
SP91Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica39982033575082622364011446123126785163351301229220433883991717306856588863217535683679718262573147251048156229783534720018426237847335974259719232385166226226325414138103420361068168946051941293070343150808731375714335855497682618555411975467184223374945825611539023766127017474610194028064624155026887557545401610269601105861004
SP92Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_3061114028261060506665619469522061581097925392284577827518503181051428445389277241327419215485315421844853835366369785212116274114323103611835391803937221241686476154587446623145947566397423920798
SP94Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_9300002000002006220813600020000001600002000500000000000000000221534310000000311400004940351500070021100000
SP95Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pallens169831641193013521312896816823749827616546766835343161273294219754062553951079576622551221407194623933413835716330213942476757393968761550350491773773471666160257425475421886880333230411119711915941412963992524114086735703562447223435829034
SP96Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_31356603236108111924411300661251721783821959010727842941349781540024712111775188499225431092181329337346293204713201146460288195113083281287222416348746801401452422092632923283714415526920491961649102271051205820150337
SP98Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;leadbetteri47833123310595110497042358001502222111120046739013250120300390330456062215482113019013387830805040794298040019095054717016513050
SPN1Bacteria;Saccharibacteria_(TM7);TM7_[C-1];TM7_[O-1];TM7_[F-1];TM7_[G-3];sp._oral_taxon_351_nov_92.457%00050340202306000811012310020026190000003500072970047000000020200052300000300000000342100000050070
SPN10Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;caviae_nov_84.834%001550000000017141202000401549020068023119034003200002028613633012491631530000018647000100034003911020
SPN11Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;sp._oral_taxon_020_nov_90.787%00000000600012297000000000000000000000000000000200000300626300002000000006000000015000002000
SPN12Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;sp._oral_taxon_175_nov_97.826%00005060090000202004003220002805800000002041001490110000000008004200000009110490025400748000002
SPN13Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XIII];Parvimonas;sp._Oral_Taxon_A91_nov_97.345%91762291266505226701355233026740940815633403734364798930218165113201816116403382000061041916177910121214250303022185413031203712190205714675113170
SPN14Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;sp._oral_taxon_175_nov_97.835%000000506000000040002000000000102001000006001520340001311000018110002300037000016010340000002001170
SPN15Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales_[F];Clostridiales_[G];sp._Oral_Taxon_A96_nov_90.733%0340001800000000000003900010000043000000000018800000000000000000001900000009000000000000000000
SPN16Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;actinomycetemcomitans_nov_97.826%000000000000000000000000000002000000000000000000000000000254000000001020000000000000000000
SPN2Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-5];sp._oral_taxon_493_nov_95.652%04370002800019007400510117000120040240000000000000000000700020602041000000000000000000000040020
SPN20Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Micrococcaceae;Rothia;mucilaginosa_nov_92.731%2023522142011010644160005870121320130462362401600821002923628000610012117383622433805112744517507311322845204132006121036360
SPN25Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp._oral_taxon_931_nov_92.609%004150005210321180167325160022917203260002701301139202031670000004830246000070931622301306302440005506030049298040330846720
SPN3Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_064_nov_97.609%2000003600140100810001050400510004145115021201000144130116033005001110180020032019110116111851700714026
SPN31Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica_nov_97.987%1010000230080002000100003900010000000014504040011200015800008102832200000045726400340029000003300001020740430
SPN37Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp._oral_taxon_215_nov_96.963%02033729003920096004350032000021470011814713900000239020054200320000000203890001600000016400000000437200000928501180
SPN4Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sputigena_nov_97.162%5000002503906000300500020000002003031000208714003030002050150002434910000002608600000039600082030
SPN42Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp._oral_taxon_308_nov_97.192%0300000000063000003020600004700000990159000003100803400495946701900009403006401600202500000160000000000
SPN49Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Mobiluncus;curtisii_nov_96.725%05800030126595202736035224002102020002810211023311055161001210157651600503788002970000001815000020124010700011299020
SPN5Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Micrococcaceae;Rothia;mucilaginosa_nov_97.349%00030000000034001946000040000000010000000000000313000004300511036050000001400000000070000000000
SPN53Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;parasanguinis_II_nov_97.826%00000304000004200006700049412000000000000000000001525000007000002000000000000000014000095000009300
SPN6Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;haemolysans_nov_97.511%00202300230671100722011800041701700010222015700000041014004205003500200008123110003000700019000000
SPN61Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp._oral_taxon_215_nov_96.529%61020572167601334018600011011608100400100000370000922000070000160030210100132900160000180001300000502300000
SPN64Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;histicola_nov_97.609%00000511400004860800000000140000200010000239080000002400000000001400000000000000000000102000000152000
SPN7Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_284_nov_97.614%060000300000173114400040020016012003007705000010000011304607600261182000000000801300000000000000600
SPN73Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._Oral_Taxon_E27_nov_85.783%1106814200002251582113200735470334111220117516424352101682581300000120517163015513532523401209212248381913130101522260698993319350
SPN75Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp._oral_taxon_473_nov_97.403%0000020000006700000000205040040004200000000013900075129121010142151009101200001000130000160212000532000
SPN8Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;sanguinis_nov_99.095%0302073074016818153134700005001220108500230161108320324069129401821153008126280301010130355315590000618
SPN85Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;histicola_nov_96.957%000000000200007600000006102600000000000003000000613001000021000000000000000010000001000000000
SPN86Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_305_nov_93.723%524900018000302342800305033525053000000024006944262203111120000721121602412646000000280003008920310235405370
SPN9Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;sp._oral_taxon_180_nov_97.826%98202002131621333162127853504102300242690242036231123229701572242472031027281303504213072020217305134001620047511732527180632565330257624
SPN95Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;sp._Oral_Taxon_G21_nov_97.162%00000002200000500060040000000000000000000000200030000022204650000000022010002030000000200020
SPP1Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;multispecies_spp1_2000000177000000810000013600000150019000000000000000000000000000000000000000880000011300000000000
SPP11Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp11_2000000000000000000000000000000000000000000015400000000000000000000000000000000000000619000
SPP12Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp12_211941401518495633003493102921555901674443853150613972345001213453245438628118815123215322404198002363113126294318031277789115980141808751565302925177730740320829576602355330158242586832353717300857236783425462920963337246401467000046244625275576282
SPP13Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp13_200000000000037800000000014812500611542390000000000000800000972031000000000000000000000000000005900000
SPP14Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_spp14_2000000039000000007004300000000000000000043000000004740000000000004560082000017763006700000000000000
SPP2Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp2_20016700000440000001120006340056000000392002400486030151000900000007600001071190359370002260000000057970000000182000
SPP4Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;multispecies_spp4_250006120000616000006701303500240000100002060450000000000001500015302120000211100184063005046787001640001256702800001600
SPP5Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp5_300000001351000000000000000000000000000000000000000000000000000000000000000000000000000000
SPPN1Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_sppn1_2_nov_97.835%4300820022423606600062290160614202024611300018113310340213330290110112820027142186062050780021380724812338110365401725944237810334658260632300008
SPPN2Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Alloscardovia;multispecies_sppn2_2_nov_95.022%000000000000000000000000000000000000000000000000000000000000000278000000002350000000020000
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1case vs controlPDFSVGPDFSVGPDFSVG
Comparison 2Male vs FemalePDFSVGPDFSVGPDFSVG
Comparison 3no vs yesPDFSVGPDFSVGPDFSVG
Comparison 4no vs yesPDFSVGPDFSVGPDFSVG
Comparison 5no vs yesPDFSVGPDFSVGPDFSVG
Comparison 6no vs yesPDFSVGPDFSVGPDFSVG
Comparison 7no vs yesPDFSVGPDFSVGPDFSVG
Comparison 8no vs yesPDFSVGPDFSVGPDFSVG
Comparison 9Normal vs HighPDFSVGPDFSVGPDFSVG
Comparison 10Normal vs HighPDFSVGPDFSVGPDFSVG
Comparison 11Desirable vs LowPDFSVGPDFSVGPDFSVG
Comparison 12High vs BorderlineHigh vs NearOptimal vs Very high vs OptimalPDFSVGPDFSVGPDFSVG
Comparison 13Normal vs BorderlineHigh vs HighPDFSVGPDFSVGPDFSVG
Comparison 14BorderlineHigh vs Normal vs HighPDFSVGPDFSVGPDFSVG
Comparison 15High vs NormalPDFSVGPDFSVGPDFSVG
Comparison 16High vs NormalPDFSVGPDFSVGPDFSVG
Comparison 17Normal vs HighPDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[5][6] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).

 

References:

  1. Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
  2. Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled [7].


References:

  1. Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

Printed on each graph is the statistical significance p values of the difference between the groups. The significance is calculated using either Kruskal-Wallis test or the Wilcoxon rank sum test, both are non-parametric methods (since microbiome read count data are considered non-normally distributed) for testing whether samples originate from the same distribution (i.e., no difference between groups). The Kruskal-Wallis test is used to compare three or more independent groups to determine if there are statistically significant differences between their medians. The Wilcoxon Rank Sum test, also known as the Mann-Whitney U test, is used to compare two independent groups to determine if there is a significant difference between their distributions.
The p-value is shown on the top of each graph. A p-value < 0.05 is considered statistically significant between/among the test groups.

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons at Species level
 
Comparison 1case vs controlView in PDFView in SVG
Comparison 2Male vs FemaleView in PDFView in SVG
Comparison 3no vs yesView in PDFView in SVG
Comparison 4no vs yesView in PDFView in SVG
Comparison 5no vs yesView in PDFView in SVG
Comparison 6no vs yesView in PDFView in SVG
Comparison 7no vs yesView in PDFView in SVG
Comparison 8no vs yesView in PDFView in SVG
Comparison 9Normal vs HighView in PDFView in SVG
Comparison 10Normal vs HighView in PDFView in SVG
Comparison 11Desirable vs LowView in PDFView in SVG
Comparison 12High vs BorderlineHigh vs NearOptimal vs Very high vs OptimalView in PDFView in SVG
Comparison 13Normal vs BorderlineHigh vs HighView in PDFView in SVG
Comparison 14BorderlineHigh vs Normal vs HighView in PDFView in SVG
Comparison 15High vs NormalView in PDFView in SVG
Comparison 16High vs NormalView in PDFView in SVG
Comparison 17Normal vs HighView in PDFView in SVG
 
The above comparisons are at the species-level. Comparisons of other taxonomy levels, from phylum to genus, are also available:
 
 
 
 

Group Significance Evaluation of Alpha-diversity Indices with QIIME2

The above comparisons and significance tests were done under the R environment. For compasison (also because this was included in the pipeline early on) we also use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 "diversity" package. As mentioned above, Kruskal Wallis test is the non-parametric alternative to the One Way ANOVA. Non-parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The H test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.case vs controlObserved FeaturesShannon IndexSimpson Index
Comparison 2.Male vs FemaleObserved FeaturesShannon IndexSimpson Index
Comparison 3.no vs yesObserved FeaturesShannon IndexSimpson Index
Comparison 4.no vs yesObserved FeaturesShannon IndexSimpson Index
Comparison 5.no vs yesObserved FeaturesShannon IndexSimpson Index
Comparison 6.no vs yesObserved FeaturesShannon IndexSimpson Index
Comparison 7.no vs yesObserved FeaturesShannon IndexSimpson Index
Comparison 8.no vs yesObserved FeaturesShannon IndexSimpson Index
Comparison 9.Normal vs HighObserved FeaturesShannon IndexSimpson Index
Comparison 10.Normal vs HighObserved FeaturesShannon IndexSimpson Index
Comparison 11.Desirable vs LowObserved FeaturesShannon IndexSimpson Index
Comparison 12.High vs BorderlineHigh vs NearOptimal vs Very high vs OptimalObserved FeaturesShannon IndexSimpson Index
Comparison 13.Normal vs BorderlineHigh vs HighObserved FeaturesShannon IndexSimpson Index
Comparison 14.BorderlineHigh vs Normal vs HighObserved FeaturesShannon IndexSimpson Index
Comparison 15.High vs NormalObserved FeaturesShannon IndexSimpson Index
Comparison 16.High vs NormalObserved FeaturesShannon IndexSimpson Index
Comparison 17.Normal vs HighObserved FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics [8]. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

References:

  1. Plantinga, AM, Wu, MC (2021). Beta Diversity and Distance-Based Analysis of Microbiome Data. In: Datta, S., Guha, S. (eds) Statistical Analysis of Microbiome Data. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-73351-3_5

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons at Species level
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1case vs controlPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2Male vs FemalePDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3no vs yesPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 4no vs yesPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 5no vs yesPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 6no vs yesPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 7no vs yesPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 8no vs yesPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 9Normal vs HighPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 10Normal vs HighPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 11Desirable vs LowPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 12High vs BorderlineHigh vs NearOptimal vs Very high vs OptimalPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 13Normal vs BorderlineHigh vs HighPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 14BorderlineHigh vs Normal vs HighPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 15High vs NormalPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 16High vs NormalPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 17Normal vs HighPDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) as the group significant testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.case vs controlBray–CurtisCorrelationAitchison
Comparison 2.Male vs FemaleBray–CurtisCorrelationAitchison
Comparison 3.no vs yesBray–CurtisCorrelationAitchison
Comparison 4.no vs yesBray–CurtisCorrelationAitchison
Comparison 5.no vs yesBray–CurtisCorrelationAitchison
Comparison 6.no vs yesBray–CurtisCorrelationAitchison
Comparison 7.no vs yesBray–CurtisCorrelationAitchison
Comparison 8.no vs yesBray–CurtisCorrelationAitchison
Comparison 9.Normal vs HighBray–CurtisCorrelationAitchison
Comparison 10.Normal vs HighBray–CurtisCorrelationAitchison
Comparison 11.Desirable vs LowBray–CurtisCorrelationAitchison
Comparison 12.High vs BorderlineHigh vs NearOptimal vs Very high vs OptimalBray–CurtisCorrelationAitchison
Comparison 13.Normal vs BorderlineHigh vs HighBray–CurtisCorrelationAitchison
Comparison 14.BorderlineHigh vs Normal vs HighBray–CurtisCorrelationAitchison
Comparison 15.High vs NormalBray–CurtisCorrelationAitchison
Comparison 16.High vs NormalBray–CurtisCorrelationAitchison
Comparison 17.Normal vs HighBray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information [9].

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used [10]. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificant that a feature/species is differentially abundant.

References:

  1. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.
  2. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.
 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.case vs control
Comparison 2.Male vs Female
Comparison 3.no vs yes
Comparison 4.no vs yes
Comparison 5.no vs yes
Comparison 6.no vs yes
Comparison 7.no vs yes
Comparison 8.no vs yes
Comparison 9.Normal vs High
Comparison 10.Normal vs High
Comparison 11.Desirable vs Low
Comparison 12.High vs BorderlineHigh vs NearOptimal vs Very high vs Optimal
Comparison 13.Normal vs BorderlineHigh vs High
Comparison 14.BorderlineHigh vs Normal vs High
Comparison 15.High vs Normal
Comparison 16.High vs Normal
Comparison 17.Normal vs High
 
 

ANCOM-BC2 Differential Abundance Analysis

 

Starting with version V1.2, we include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020) [11]. ANCOM-BC is an updated version of "ANCOM" that:
(a) provides statistically valid test with appropriate p-values,
(b) provides confidence intervals for differential abundance of each taxon,
(c) controls the False Discovery Rate (FDR),
(d) maintains adequate power, and
(e) is computationally simple to implement.

The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

Starting with version V1.43, ANCOM-BC2 is used instead of ANCOM-BC, So that multiple pairwise directional test can be performed (if there are more than two gorups in a comparison). When performing pairwise directional test, the mixed directional false discover rate (mdFDR) is taken into account. The mdFDR is the combination of false discovery rate due to multiple testing, multiple pairwise comparisons, and directional tests within each pairwise comparison. The mdFDR is adopted from (Guo, Sarkar, and Peddada 2010 [12]; Grandhi, Guo, and Peddada 2016 [13]). For more detail explanation and additional features of ANCOM-BC2 please see author's documentation.

References:

  1. Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.
  2. Guo W, Sarkar SK, Peddada SD. Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories. Biometrics. 2010 Jun;66(2):485-92. doi: 10.1111/j.1541-0420.2009.01292.x. Epub 2009 Jul 23. PMID: 19645703; PMCID: PMC2895927.
  3. Grandhi A, Guo W, Peddada SD. A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies. BMC Bioinformatics. 2016 Feb 25;17:104. doi: 10.1186/s12859-016-0937-5. PMID: 26917217; PMCID: PMC4768411.
 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.case vs control
Comparison 2.Male vs Female
Comparison 3.no vs yes
Comparison 4.no vs yes
Comparison 5.no vs yes
Comparison 6.no vs yes
Comparison 7.no vs yes
Comparison 8.no vs yes
Comparison 9.Normal vs High
Comparison 10.Normal vs High
Comparison 11.Desirable vs Low
Comparison 12.High vs BorderlineHigh vs NearOptimal vs Very high vs Optimal
Comparison 13.Normal vs BorderlineHigh vs High
Comparison 14.BorderlineHigh vs Normal vs High
Comparison 15.High vs Normal
Comparison 16.High vs Normal
Comparison 17.Normal vs High
 
 
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011) [14]. Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

  1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.
 
case vs control
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.case vs control
Comparison 2.Male vs Female
Comparison 3.no vs yes
Comparison 4.no vs yes
Comparison 5.no vs yes
Comparison 6.no vs yes
Comparison 7.no vs yes
Comparison 8.no vs yes
Comparison 9.Normal vs High
Comparison 10.Normal vs High
Comparison 11.Desirable vs Low
Comparison 12.High vs BorderlineHigh vs NearOptimal vs Very high vs Optimal
Comparison 13.Normal vs BorderlineHigh vs High
Comparison 14.BorderlineHigh vs Normal vs High
Comparison 15.High vs Normal
Comparison 16.High vs Normal
Comparison 17.Normal vs High
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1case vs controlPDFSVGPDFSVGPDFSVG
Comparison 2Male vs FemalePDFSVGPDFSVGPDFSVG
Comparison 3no vs yesPDFSVGPDFSVGPDFSVG
Comparison 4no vs yesPDFSVGPDFSVGPDFSVG
Comparison 5no vs yesPDFSVGPDFSVGPDFSVG
Comparison 6no vs yesPDFSVGPDFSVGPDFSVG
Comparison 7no vs yesPDFSVGPDFSVGPDFSVG
Comparison 8no vs yesPDFSVGPDFSVGPDFSVG
Comparison 9Normal vs HighPDFSVGPDFSVGPDFSVG
Comparison 10Normal vs HighPDFSVGPDFSVGPDFSVG
Comparison 11Desirable vs LowPDFSVGPDFSVGPDFSVG
Comparison 12High vs BorderlineHigh vs NearOptimal vs Very high vs OptimalPDFSVGPDFSVGPDFSVG
Comparison 13Normal vs BorderlineHigh vs HighPDFSVGPDFSVGPDFSVG
Comparison 14BorderlineHigh vs Normal vs HighPDFSVGPDFSVGPDFSVG
Comparison 15High vs NormalPDFSVGPDFSVGPDFSVG
Comparison 16High vs NormalPDFSVGPDFSVGPDFSVG
Comparison 17Normal vs HighPDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1case vs controlPDFSVGPDFSVGPDFSVG
Comparison 2Male vs FemalePDFSVGPDFSVGPDFSVG
Comparison 3no vs yesPDFSVGPDFSVGPDFSVG
Comparison 4no vs yesPDFSVGPDFSVGPDFSVG
Comparison 5no vs yesPDFSVGPDFSVGPDFSVG
Comparison 6no vs yesPDFSVGPDFSVGPDFSVG
Comparison 7no vs yesPDFSVGPDFSVGPDFSVG
Comparison 8no vs yesPDFSVGPDFSVGPDFSVG
Comparison 9Normal vs HighPDFSVGPDFSVGPDFSVG
Comparison 10Normal vs HighPDFSVGPDFSVGPDFSVG
Comparison 11Desirable vs LowPDFSVGPDFSVGPDFSVG
Comparison 12High vs BorderlineHigh vs NearOptimal vs Very high vs OptimalPDFSVGPDFSVGPDFSVG
Comparison 13Normal vs BorderlineHigh vs HighPDFSVGPDFSVGPDFSVG
Comparison 14BorderlineHigh vs Normal vs HighPDFSVGPDFSVGPDFSVG
Comparison 15High vs NormalPDFSVGPDFSVGPDFSVG
Comparison 16High vs NormalPDFSVGPDFSVGPDFSVG
Comparison 17Normal vs HighPDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1case vs controlPDFSVGPDFSVGPDFSVG
Comparison 2Male vs FemalePDFSVGPDFSVGPDFSVG
Comparison 3no vs yesPDFSVGPDFSVGPDFSVG
Comparison 4no vs yesPDFSVGPDFSVGPDFSVG
Comparison 5no vs yesPDFSVGPDFSVGPDFSVG
Comparison 6no vs yesPDFSVGPDFSVGPDFSVG
Comparison 7no vs yesPDFSVGPDFSVGPDFSVG
Comparison 8no vs yesPDFSVGPDFSVGPDFSVG
Comparison 9Normal vs HighPDFSVGPDFSVGPDFSVG
Comparison 10Normal vs HighPDFSVGPDFSVGPDFSVG
Comparison 11Desirable vs LowPDFSVGPDFSVGPDFSVG
Comparison 12High vs BorderlineHigh vs NearOptimal vs Very high vs OptimalPDFSVGPDFSVGPDFSVG
Comparison 13Normal vs BorderlineHigh vs HighPDFSVGPDFSVGPDFSVG
Comparison 14BorderlineHigh vs Normal vs HighPDFSVGPDFSVGPDFSVG
Comparison 15High vs NormalPDFSVGPDFSVGPDFSVG
Comparison 16High vs NormalPDFSVGPDFSVGPDFSVG
Comparison 17Normal vs HighPDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015) [15]. SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012)[16], which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.

References:

  1. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.
  2. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.
 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

XIII. Disclaimer

The results of this analysis are for research purpose only. They are not intended to diagnose, treat, cure, or prevent any disease. Forsyth and FOMC are not responsible for use of information provided in this report outside the research area.

 

Copyright FOMC 2025