FOMC Service Report

16S rRNA Gene V3V4 Amplicon Sequencing

Version V1.52

Version History

The Forsyth Institute, Cambridge, MA, USA
February 04, 2026

Project ID: Alzheimer_SRP3410871_oral


";

I. Project Summary

Project Alzheimer_SRP3410871_oral services include NGS sequencing of the V3V4 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report, as well as the sequence raw data from the download links provided below. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested. We provide many analyses, starting from the raw sequence quality and noise filtering, pair reads merging, as well as chimera filtering for the sequences, using the DADA2 denosing algorithm and pipeline.

We also provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

The samples were processed and analyzed with the ZymoBIOMICS® Service: Targeted Metagenomic Sequencing (Zymo Research, Irvine, CA).

DNA Extraction: If DNA extraction was performed, one of three different DNA extraction kits was used depending on the sample type and sample volume and were used according to the manufacturer’s instructions, unless otherwise stated. The kit used in this project is marked below:

ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA)
N/A (DNA Extraction Not Performed)
Elution Volume: 50µL
Additional Notes: NA

Targeted Library Preparation: The DNA samples were prepared for targeted sequencing with the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA). These primers were custom designed by Zymo Research to provide the best coverage of the 16S gene while maintaining high sensitivity. The primer sets used in this project are marked below:

Quick-16S™ Primer Set V1-V2 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V1-V3 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V3-V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V6-V8 (Zymo Research, Irvine, CA)
Other: NA
Additional Notes: NA

The sequencing library was prepared using an innovative library preparation process in which PCR reactions were performed in real-time PCR machines to control cycles and therefore limit PCR chimera formation. The final PCR products were quantified with qPCR fluorescence readings and pooled together based on equal molarity. The final pooled library was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research, Irvine, CA), then quantified with TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher Scientific, Waltham, WA).

Control Samples: The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control for each DNA extraction, if performed. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each targeted library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

Sequencing: The final library was sequenced on Illumina® MiSeq™ with a V3 reagent kit (600 cycles). The sequencing was performed with 10% PhiX spike-in.

Absolute Abundance Quantification*: A quantitative real-time PCR was set up with a standard curve. The standard curve was made with plasmid DNA containing one copy of the 16S gene and one copy of the fungal ITS2 region prepared in 10-fold serial dilutions. The primers used were the same as those used in Targeted Library Preparation. The equation generated by the plasmid DNA standard curve was used to calculate the number of gene copies in the reaction for each sample. The PCR input volume (2 µl) was used to calculate the number of gene copies per microliter in each DNA sample.
The number of genome copies per microliter DNA sample was calculated by dividing the gene copy number by an assumed number of gene copies per genome. The value used for 16S copies per genome is 4. The value used for ITS copies per genome is 200. The amount of DNA per microliter DNA sample was calculated using an assumed genome size of 4.64 x 106 bp, the genome size of Escherichia coli, for 16S samples, or an assumed genome size of 1.20 x 107 bp, the genome size of Saccharomyces cerevisiae, for ITS samples. This calculation is shown below:

Calculated Total DNA = Calculated Total Genome Copies × Assumed Genome Size (4.64 × 106 bp) ×
Average Molecular Weight of a DNA bp (660 g/mole/bp) ÷ Avogadro’s Number (6.022 x 1023/mole)


* Absolute Abundance Quantification is only available for 16S and ITS analyses.

The absolute abundance standard curve data can be viewed in Excel here:

The absolute abundance standard curve is shown below:

Absolute Abundance Standard Curve

 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:

1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

The raw NGS sequence data is available for download with the link provided below. The data is a compressed ZIP file and can be unzipped to individual sequence files. Since this is a Pac-Bio full-length (V1V9) 16S rRNA amplicon sequencing, raw sequences are available for download in a single compressed zip file in the download link below. After unzipping, you will find individual sequence files for each of your samples with the file extension “*.fastq.gz”. The files are in FASTQ format and are compressed. FASTQ format is a text-based data format for storing both a biological sequence and its corresponding quality scores. Most sequence analysis software will be able to open them. The Sample IDs associated with the fastq files are listed in the table below:

Sample IDOriginal Sample IDRead 1 File NameRead 2 File Name
F3410871.S01fastq_ori/SRR16303366_1.fastqfastq_ori/SRR16303366_2.fastq
F3410871.S02fastq_ori/SRR16303367_1.fastqfastq_ori/SRR16303367_2.fastq
F3410871.S03fastq_ori/SRR16303368_1.fastqfastq_ori/SRR16303368_2.fastq
F3410871.S04fastq_ori/SRR16303369_1.fastqfastq_ori/SRR16303369_2.fastq
F3410871.S05fastq_ori/SRR16303370_1.fastqfastq_ori/SRR16303370_2.fastq
F3410871.S06fastq_ori/SRR16303371_1.fastqfastq_ori/SRR16303371_2.fastq
F3410871.S07fastq_ori/SRR16303372_1.fastqfastq_ori/SRR16303372_2.fastq
F3410871.S08fastq_ori/SRR16303373_1.fastqfastq_ori/SRR16303373_2.fastq
F3410871.S09fastq_ori/SRR16303374_1.fastqfastq_ori/SRR16303374_2.fastq
F3410871.S10fastq_ori/SRR16303375_1.fastqfastq_ori/SRR16303375_2.fastq
F3410871.S11fastq_ori/SRR16303377_1.fastqfastq_ori/SRR16303377_2.fastq
F3410871.S12fastq_ori/SRR16303378_1.fastqfastq_ori/SRR16303378_2.fastq
F3410871.S13fastq_ori/SRR16303379_1.fastqfastq_ori/SRR16303379_2.fastq
F3410871.S14fastq_ori/SRR16303380_1.fastqfastq_ori/SRR16303380_2.fastq
F3410871.S15fastq_ori/SRR16303381_1.fastqfastq_ori/SRR16303381_2.fastq
F3410871.S16fastq_ori/SRR16303382_1.fastqfastq_ori/SRR16303382_2.fastq
F3410871.S17fastq_ori/SRR16303383_1.fastqfastq_ori/SRR16303383_2.fastq
F3410871.S18fastq_ori/SRR16303384_1.fastqfastq_ori/SRR16303384_2.fastq
F3410871.S19fastq_ori/SRR16303385_1.fastqfastq_ori/SRR16303385_2.fastq
F3410871.S20fastq_ori/SRR16303386_1.fastqfastq_ori/SRR16303386_2.fastq
F3410871.S21fastq_ori/SRR16303387_1.fastqfastq_ori/SRR16303387_2.fastq
F3410871.S22fastq_ori/SRR16303388_1.fastqfastq_ori/SRR16303388_2.fastq
F3410871.S23fastq_ori/SRR16303389_1.fastqfastq_ori/SRR16303389_2.fastq
F3410871.S24fastq_ori/SRR16303390_1.fastqfastq_ori/SRR16303390_2.fastq
F3410871.S25fastq_ori/SRR16303391_1.fastqfastq_ori/SRR16303391_2.fastq
F3410871.S26fastq_ori/SRR16303392_1.fastqfastq_ori/SRR16303392_2.fastq
F3410871.S27fastq_ori/SRR16303393_1.fastqfastq_ori/SRR16303393_2.fastq
F3410871.S28fastq_ori/SRR16303394_1.fastqfastq_ori/SRR16303394_2.fastq
F3410871.S29fastq_ori/SRR16303395_1.fastqfastq_ori/SRR16303395_2.fastq
F3410871.S30fastq_ori/SRR16303396_1.fastqfastq_ori/SRR16303396_2.fastq
F3410871.S31fastq_ori/SRR16303397_1.fastqfastq_ori/SRR16303397_2.fastq
F3410871.S32fastq_ori/SRR16303398_1.fastqfastq_ori/SRR16303398_2.fastq
F3410871.S33fastq_ori/SRR16303399_1.fastqfastq_ori/SRR16303399_2.fastq
F3410871.S34fastq_ori/SRR16303400_1.fastqfastq_ori/SRR16303400_2.fastq
F3410871.S35fastq_ori/SRR16303401_1.fastqfastq_ori/SRR16303401_2.fastq
F3410871.S36fastq_ori/SRR16303402_1.fastqfastq_ori/SRR16303402_2.fastq
F3410871.S37fastq_ori/SRR16303403_1.fastqfastq_ori/SRR16303403_2.fastq
F3410871.S38fastq_ori/SRR16303404_1.fastqfastq_ori/SRR16303404_2.fastq
F3410871.S39fastq_ori/SRR16303405_1.fastqfastq_ori/SRR16303405_2.fastq
F3410871.S40fastq_ori/SRR16303406_1.fastqfastq_ori/SRR16303406_2.fastq
F3410871.S41fastq_ori/SRR16303407_1.fastqfastq_ori/SRR16303407_2.fastq
F3410871.S42fastq_ori/SRR16303408_1.fastqfastq_ori/SRR16303408_2.fastq
F3410871.S43fastq_ori/SRR16303409_1.fastqfastq_ori/SRR16303409_2.fastq
F3410871.S44fastq_ori/SRR16303410_1.fastqfastq_ori/SRR16303410_2.fastq
F3410871.S45fastq_ori/SRR16303411_1.fastqfastq_ori/SRR16303411_2.fastq
F3410871.S46fastq_ori/SRR16303412_1.fastqfastq_ori/SRR16303412_2.fastq
F3410871.S47fastq_ori/SRR16303413_1.fastqfastq_ori/SRR16303413_2.fastq
F3410871.S48fastq_ori/SRR16303414_1.fastqfastq_ori/SRR16303414_2.fastq
F3410871.S49fastq_ori/SRR16303415_1.fastqfastq_ori/SRR16303415_2.fastq
F3410871.S50fastq_ori/SRR16303416_1.fastqfastq_ori/SRR16303416_2.fastq
F3410871.S51fastq_ori/SRR16303417_1.fastqfastq_ori/SRR16303417_2.fastq
F3410871.S52fastq_ori/SRR16303418_1.fastqfastq_ori/SRR16303418_2.fastq
F3410871.S53fastq_ori/SRR16303419_1.fastqfastq_ori/SRR16303419_2.fastq
F3410871.S54fastq_ori/SRR16303420_1.fastqfastq_ori/SRR16303420_2.fastq
F3410871.S55fastq_ori/SRR16303421_1.fastqfastq_ori/SRR16303421_2.fastq
F3410871.S56fastq_ori/SRR16303422_1.fastqfastq_ori/SRR16303422_2.fastq
F3410871.S57fastq_ori/SRR16303423_1.fastqfastq_ori/SRR16303423_2.fastq
F3410871.S58fastq_ori/SRR16303424_1.fastqfastq_ori/SRR16303424_2.fastq
F3410871.S59fastq_ori/SRR16303425_1.fastqfastq_ori/SRR16303425_2.fastq
F3410871.S60fastq_ori/SRR16303426_1.fastqfastq_ori/SRR16303426_2.fastq
F3410871.S61fastq_ori/SRR16303427_1.fastqfastq_ori/SRR16303427_2.fastq
F3410871.S62fastq_ori/SRR16303428_1.fastqfastq_ori/SRR16303428_2.fastq
F3410871.S63fastq_ori/SRR16303429_1.fastqfastq_ori/SRR16303429_2.fastq
F3410871.S64fastq_ori/SRR16303430_1.fastqfastq_ori/SRR16303430_2.fastq
F3410871.S65fastq_ori/SRR16303431_1.fastqfastq_ori/SRR16303431_2.fastq
F3410871.S66fastq_ori/SRR16303432_1.fastqfastq_ori/SRR16303432_2.fastq
F3410871.S67fastq_ori/SRR16303434_1.fastqfastq_ori/SRR16303434_2.fastq
F3410871.S68fastq_ori/SRR16303435_1.fastqfastq_ori/SRR16303435_2.fastq
F3410871.S69fastq_ori/SRR16303436_1.fastqfastq_ori/SRR16303436_2.fastq
F3410871.S70fastq_ori/SRR16303437_1.fastqfastq_ori/SRR16303437_2.fastq
F3410871.S71fastq_ori/SRR16303438_1.fastqfastq_ori/SRR16303438_2.fastq
F3410871.S72fastq_ori/SRR16303439_1.fastqfastq_ori/SRR16303439_2.fastq
F3410871.S73fastq_ori/SRR16303440_1.fastqfastq_ori/SRR16303440_2.fastq
F3410871.S74fastq_ori/SRR16303441_1.fastqfastq_ori/SRR16303441_2.fastq
F3410871.S75fastq_ori/SRR16303442_1.fastqfastq_ori/SRR16303442_2.fastq
F3410871.S76fastq_ori/SRR16303443_1.fastqfastq_ori/SRR16303443_2.fastq
F3410871.S77fastq_ori/SRR16303444_1.fastqfastq_ori/SRR16303444_2.fastq
F3410871.S78fastq_ori/SRR16303445_1.fastqfastq_ori/SRR16303445_2.fastq
F3410871.S79fastq_ori/SRR16303446_1.fastqfastq_ori/SRR16303446_2.fastq
F3410871.S80fastq_ori/SRR16303447_1.fastqfastq_ori/SRR16303447_2.fastq
F3410871.S81fastq_ori/SRR16303448_1.fastqfastq_ori/SRR16303448_2.fastq
F3410871.S82fastq_ori/SRR16303449_1.fastqfastq_ori/SRR16303449_2.fastq
F3410871.S83fastq_ori/SRR16303450_1.fastqfastq_ori/SRR16303450_2.fastq
F3410871.S84fastq_ori/SRR16303451_1.fastqfastq_ori/SRR16303451_2.fastq
F3410871.S85fastq_ori/SRR16303452_1.fastqfastq_ori/SRR16303452_2.fastq
F3410871.S86fastq_ori/SRR16303461_1.fastqfastq_ori/SRR16303461_2.fastq
F3410871.S87fastq_ori/SRR16303472_1.fastqfastq_ori/SRR16303472_2.fastq
F3410871.S88fastq_ori/SRR16303483_1.fastqfastq_ori/SRR16303483_2.fastq
F3410871.S89fastq_ori/SRR16303494_1.fastqfastq_ori/SRR16303494_2.fastq
F3410871.S90fastq_ori/SRR16303516_1.fastqfastq_ori/SRR16303516_2.fastq
F3410871.S91fastq_ori/SRR16303527_1.fastqfastq_ori/SRR16303527_2.fastq
F3410871.S92fastq_ori/SRR16303538_1.fastqfastq_ori/SRR16303538_2.fastq
F3410871.S93fastq_ori/SRR16303549_1.fastqfastq_ori/SRR16303549_2.fastq
F3410871.S94fastq_ori/SRR16303561_1.fastqfastq_ori/SRR16303561_2.fastq
F3410871.S95fastq_ori/SRR16303562_1.fastqfastq_ori/SRR16303562_2.fastq

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Raw sequence data download link:

 

VI. Analysis - DADA2 Read Processing

What is DADA2?

DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors [1]. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. DADA2 identified more real variants and output fewer spurious sequences than other methods.

DADA2’s advantage is that it uses more of the data. The DADA2 error model incorporates quality information, which is ignored by all other methods after filtering. The DADA2 error model incorporates quantitative abundances, whereas most other methods use abundance ranks if they use abundance at all. The DADA2 error model identifies the differences between sequences, eg. A->C, whereas other methods merely count the mismatches. DADA2 can parameterize its error model from the data itself, rather than relying on previous datasets that may or may not reflect the PCR and sequencing protocols used in your study.

DADA2 Software Package is available as an R package at : https://benjjneb.github.io/dada2/index.html

References

  1. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

Analysis Procedures:

DADA2 pipeline includes several tools for read quality control, including quality filtering, trimming, denoising, pair merging and chimera filtering. Below are the major processing steps of DADA2:

Step 1. Read trimming based on sequence quality The quality of NGS Illumina sequences often decreases toward the end of the reads. DADA2 allows to trim off the poor quality read ends in order to improve the error model building and pair mergicing performance.

Step 2. Learn the Error Rates The DADA2 algorithm makes use of a parametric error model (err) and every amplicon dataset has a different set of error rates. The learnErrors method learns this error model from the data, by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution. As in many machine-learning problems, the algorithm must begin with an initial guess, for which the maximum possible error rates in this data are used (the error rates if only the most abundant sequence is correct and all the rest are errors).

Step 3. Infer amplicon sequence variants (ASVs) based on the error model built in previous step. This step is also called sequence "denoising". The outcome of this step is a list of ASVs that are the equivalent of oligonucleotides.

Step 4. Merge paired reads. If the sequencing products are read pairs, DADA2 will merge the R1 and R2 ASVs into single sequences. Merging is performed by aligning the denoised forward reads with the reverse-complement of the corresponding denoised reverse reads, and then constructing the merged “contig” sequences. By default, merged sequences are only output if the forward and reverse reads overlap by at least 12 bases, and are identical to each other in the overlap region (but these conditions can be changed via function arguments).

Step 5. Remove chimera. The core dada method corrects substitution and indel errors, but chimeras remain. Fortunately, the accuracy of sequence variants after denoising makes identifying chimeric ASVs simpler than when dealing with fuzzy OTUs. Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant “parent” sequences. The frequency of chimeric sequences varies substantially from dataset to dataset, and depends on on factors including experimental procedures and sample complexity.

Results

1. Read Quality Plots NGS sequence analaysis starts with visualizing the quality of the sequencing. Below are the quality plots of the first sample for the R1 and R2 reads separately. In gray-scale is a heat map of the frequency of each quality score at each base position. The mean quality score at each position is shown by the green line, and the quartiles of the quality score distribution by the orange lines. The forward reads are usually of better quality. It is a common practice to trim the last few nucleotides to avoid less well-controlled errors that can arise there. The trimming affects the downstream steps including error model building, merging and chimera calling. FOMC uses an empirical approach to test many combinations of different trim length in order to achieve best final amplicon sequence variants (ASVs), see the next section “Optimal trim length for ASVs”.

Quality plots for all samples:

2. Optimal trim length for ASVs The final number of merged and chimera-filtered ASVs depends on the quality filtering (hence trimming) in the very beginning of the DADA2 pipeline. In order to achieve highest number of ASVs, an empirical approach was used -

  1. Create a random subset of each sample consisting of 5,000 R1 and 5,000 R2 (to reduce computation time)
  2. Trim 10 bases at a time from the ends of both R1 and R2 up to 50 bases
  3. For each combination of trimmed length (e.g., 300x300, 300x290, 290x290 etc), the trimmed reads are subject to the entire DADA2 pipeline for chimera-filtered merged ASVs
  4. The combination with highest percentage of the input reads becoming final ASVs is selected for the complete set of data

Below is the result of such operation, showing ASV percentages of total reads for all trimming combinations (1st Column = R1 lengths in bases; 1st Row = R2 lengths in bases):

R1/R2249239229219209199
25057.73%59.54%60.28%60.67%61.05%61.41%
24085.91%87.98%88.90%89.40%89.94%90.31%
23085.96%88.02%88.95%89.46%90.01%90.38%
22086.13%88.17%89.08%89.55%90.09%90.60%
21086.18%88.24%89.16%89.61%90.17%90.67%
20086.31%88.36%89.28%89.73%90.26%90.75%

Based on the above result, the trim length combination of R1 = 200 bases and R2 = 199 bases (highlighted red above), was chosen for generating final ASVs for all sequences. This combination generated highest number of merged non-chimeric ASVs and was used for downstream analyses, if requested.

3. Error plots from learning the error rates After DADA2 building the error model for the set of data, it is always worthwhile, as a sanity check if nothing else, to visualize the estimated error rates. The error rates for each possible transition (A→C, A→G, …) are shown below. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal definition of the Q-score. The ideal result would be the estimated error rates (black line) are a good fit to the observed rates (points), and the error rates drop with increased quality as expected.

Forward Read R1 Error Plot


Reverse Read R2 Error Plot

The PDF version of these plots are available here:

 

4. DADA2 Result Summary The table below shows the summary of the DADA2 analysis, tracking paired read counts of each samples for all the steps during DADA2 denoising process - including end-trimming (filtered), denoising (denoisedF, denoisedF), pair merging (merged) and chimera removal (nonchim).

Sample IDF3410871.S01F3410871.S02F3410871.S03F3410871.S04F3410871.S05F3410871.S06F3410871.S07F3410871.S08F3410871.S09F3410871.S10F3410871.S11F3410871.S12F3410871.S13F3410871.S14F3410871.S15F3410871.S16F3410871.S17F3410871.S18F3410871.S19F3410871.S20F3410871.S21F3410871.S22F3410871.S23F3410871.S24F3410871.S25F3410871.S26F3410871.S27F3410871.S28F3410871.S29F3410871.S30F3410871.S31F3410871.S32F3410871.S33F3410871.S34F3410871.S35F3410871.S36F3410871.S37F3410871.S38F3410871.S39F3410871.S40F3410871.S41F3410871.S42F3410871.S43F3410871.S44F3410871.S45F3410871.S46F3410871.S47F3410871.S48F3410871.S49F3410871.S50F3410871.S51F3410871.S52F3410871.S53F3410871.S54F3410871.S55F3410871.S56F3410871.S57F3410871.S58F3410871.S59F3410871.S60F3410871.S61F3410871.S62F3410871.S63F3410871.S64F3410871.S65F3410871.S66F3410871.S67F3410871.S68F3410871.S69F3410871.S70F3410871.S71F3410871.S72F3410871.S73F3410871.S74F3410871.S75F3410871.S76F3410871.S77F3410871.S78F3410871.S79F3410871.S80F3410871.S81F3410871.S82F3410871.S83F3410871.S84F3410871.S85F3410871.S86F3410871.S87F3410871.S88F3410871.S89F3410871.S90F3410871.S91F3410871.S92F3410871.S93F3410871.S94F3410871.S95Row SumPercentage
input55,20937,00339,94448,97330,0227,95917,69935,38437,8341,94594,54052,80545,98342,34548,38521,79861,37823,74346,73021,85541,50316,08853,78748,76756,37662,92649,02937,03545,20562,3355,62865,04841,14555,49284,67630,36478,66543,42958,37551,58524,39611,29448,6836,21247,93051,18661,74444,02289,29961,29245,88347,6816,89938,11871,14455,40864,66573,05655,40244,65763,24165,330121,07220,99464,31478,26071,53483,66679,92270,70870,18461,40981,03111,84968,25194,41370,49466,31763,99540,72753,668107,93753,63969,49714,09685,58415,30813,3344,33825,52110,82521,3028,45613,54218,1104,570,831100.00%
filtered54,82436,76339,64448,67629,8457,88817,56735,10537,5271,94294,52752,79745,97942,33748,38321,79561,36623,73546,72821,85141,49316,08453,77848,75856,37162,91249,02337,03045,19262,3325,62465,04041,13455,49184,66730,36078,65843,42258,37051,57424,38911,28648,6726,20747,92751,17861,73644,01989,29261,28245,87847,6756,88938,10571,13455,40064,66073,05055,39544,64763,22765,318121,05920,99464,29478,25671,52383,64879,90470,69370,17461,40481,01911,82968,24794,40670,47466,30463,98140,71453,649107,92453,62569,47414,09485,57115,30413,3274,33525,52010,82521,3028,45013,53218,1094,567,92299.94%
denoisedF54,23636,09339,03048,01629,3456,46916,90433,91336,5051,91692,70152,17545,14141,15347,75221,39259,91022,49746,06821,79240,55315,53052,33847,93655,23961,79948,29735,95443,93261,7715,59464,24339,89654,88183,73529,50677,96642,85857,46350,89823,62611,22747,3495,95647,09250,27260,80443,00888,43660,24644,98546,6876,86137,15970,01654,36963,80072,26854,44743,80262,12763,211118,55920,94262,26876,62469,39181,06177,71468,70867,75259,74279,36311,76366,85192,66668,13064,19462,27539,00651,503105,81352,30267,28314,00384,11615,22513,2784,28825,44310,78121,2108,42413,47018,0534,473,34697.87%
denoisedR53,36035,54438,38247,14928,9446,20116,46133,03735,6991,89589,46650,70143,69939,72846,47620,57158,42221,61444,55321,71539,42715,00950,47945,97653,90960,48146,79534,55242,52660,4035,56462,54938,86553,31381,90228,50776,20641,53356,41449,79022,69011,17346,2305,74245,78848,83259,12341,74386,63958,90443,71545,1466,83836,35268,31952,80962,44470,64052,77542,77361,04961,132115,28620,91060,22174,67867,40878,96375,58566,67265,77057,79677,36111,73465,32389,72466,36962,26260,26937,80050,190103,15650,57264,99313,95782,01015,22613,2254,26125,35210,77321,1448,40713,41717,9724,357,45995.33%
merged52,12335,16237,67645,93128,6785,82515,53032,07734,8351,85886,44049,36242,26137,87845,07019,92756,84221,17341,93621,42838,24314,76947,91243,07052,67259,90345,29933,24740,83859,7595,49060,35938,08451,57280,48827,41372,97839,89355,55149,17822,08311,06645,1515,59544,71447,53756,39740,36884,44857,36342,68643,2766,81735,99466,68251,03060,23268,33450,07442,20660,28459,556113,12320,82457,74173,46665,48776,71272,78564,47563,75356,30474,40911,66563,88786,68564,64660,69558,29336,64349,367101,41249,28462,86713,79179,40515,06213,0914,09924,59910,56720,7288,36113,25217,8234,235,92492.67%
nonchim50,37235,03236,77944,57328,5965,73315,35131,55734,3101,85885,25348,17041,50137,43744,34519,67655,71321,01940,45621,37437,65714,76947,30441,91251,05359,33944,25332,65939,65658,1885,36459,14437,94650,40378,39427,26870,12239,15654,59048,59021,85710,94344,8795,58044,17847,06453,93239,98183,31156,55141,64942,5536,81735,98664,63649,23657,61366,27549,25441,96859,94758,966109,94420,66656,40972,27064,03676,08872,42162,91362,59755,48973,56111,66562,84184,38164,30059,80057,37336,56749,34798,30248,80662,66713,79177,24015,04112,9624,09924,59710,56420,7268,36113,24917,8234,160,94491.03%

This table can be downloaded as an Excel table below:

 

5. DADA2 Amplicon Sequence Variants (ASVs). A total of 730 unique merged and chimera-free ASV sequences were identified, and their corresponding read counts for each sample are available in the "ASV Read Count Table" with rows for the ASV sequences and columns for sample. This read count table can be used for microbial profile comparison among different samples and the sequences provided in the table can be used to taxonomy assignment.

 

The table can be downloaded from this link:

 
 

Sample Meta Information

Download Sample Meta Information
#SampleIDRunGroupsexDisease_Sex
F3410871.S01SRR16303366ControlmaleControl_male
F3410871.S02SRR16303367ControlfemaleControl_female
F3410871.S03SRR16303368ControlfemaleControl_female
F3410871.S04SRR16303369ControlfemaleControl_female
F3410871.S05SRR16303370ControlmaleControl_male
F3410871.S06SRR16303371ControlmaleControl_male
F3410871.S07SRR16303372ControlmaleControl_male
F3410871.S08SRR16303373ControlmaleControl_male
F3410871.S09SRR16303374ControlmaleControl_male
F3410871.S10SRR16303375ControlmaleControl_male
F3410871.S11SRR16303377ADmaleAD_male
F3410871.S12SRR16303378ADfemaleAD_female
F3410871.S13SRR16303379ADmaleAD_male
F3410871.S14SRR16303380ADmaleAD_male
F3410871.S15SRR16303381ADmaleAD_male
F3410871.S16SRR16303382ADmaleAD_male
F3410871.S17SRR16303383ADmaleAD_male
F3410871.S18SRR16303384ADmaleAD_male
F3410871.S19SRR16303385ADmaleAD_male
F3410871.S20SRR16303386ControlmaleControl_male
F3410871.S21SRR16303387ADmaleAD_male
F3410871.S22SRR16303388ADfemaleAD_female
F3410871.S23SRR16303389ADmaleAD_male
F3410871.S24SRR16303390ADfemaleAD_female
F3410871.S25SRR16303391ControlfemaleControl_female
F3410871.S26SRR16303392ADmaleAD_male
F3410871.S27SRR16303393ADfemaleAD_female
F3410871.S28SRR16303394ADmaleAD_male
F3410871.S29SRR16303395ControlmaleControl_male
F3410871.S30SRR16303396ControlfemaleControl_female
F3410871.S31SRR16303397ControlmaleControl_male
F3410871.S32SRR16303398ADmaleAD_male
F3410871.S33SRR16303399ADmaleAD_male
F3410871.S34SRR16303400ADmaleAD_male
F3410871.S35SRR16303401ADmaleAD_male
F3410871.S36SRR16303402ADfemaleAD_female
F3410871.S37SRR16303403ADmaleAD_male
F3410871.S38SRR16303404ControlfemaleControl_female
F3410871.S39SRR16303405ControlfemaleControl_female
F3410871.S40SRR16303406ADmaleAD_male
F3410871.S41SRR16303407ControlmaleControl_male
F3410871.S42SRR16303408ControlmaleControl_male
F3410871.S43SRR16303409ADfemaleAD_female
F3410871.S44SRR16303410ControlfemaleControl_female
F3410871.S45SRR16303411ControlmaleControl_male
F3410871.S46SRR16303412ADmaleAD_male
F3410871.S47SRR16303413ControlmaleControl_male
F3410871.S48SRR16303414ControlfemaleControl_female
F3410871.S49SRR16303415ADmaleAD_male
F3410871.S50SRR16303416ControlfemaleControl_female
F3410871.S51SRR16303417ADmaleAD_male
F3410871.S52SRR16303418ADmaleAD_male
F3410871.S53SRR16303419ControlmaleControl_male
F3410871.S54SRR16303420ControlmaleControl_male
F3410871.S55SRR16303421ADmaleAD_male
F3410871.S56SRR16303422ADmaleAD_male
F3410871.S57SRR16303423ControlmaleControl_male
F3410871.S58SRR16303424ADfemaleAD_female
F3410871.S59SRR16303425ControlmaleControl_male
F3410871.S60SRR16303426ADfemaleAD_female
F3410871.S61SRR16303427ADfemaleAD_female
F3410871.S62SRR16303428ADmaleAD_male
F3410871.S63SRR16303429ControlfemaleControl_female
F3410871.S64SRR16303430ControlmaleControl_male
F3410871.S65SRR16303431ControlfemaleControl_female
F3410871.S66SRR16303432ControlmaleControl_male
F3410871.S67SRR16303434ControlmaleControl_male
F3410871.S68SRR16303435ADfemaleAD_female
F3410871.S69SRR16303436ControlfemaleControl_female
F3410871.S70SRR16303437ADmaleAD_male
F3410871.S71SRR16303438ControlmaleControl_male
F3410871.S72SRR16303439ADfemaleAD_female
F3410871.S73SRR16303440ADmaleAD_male
F3410871.S74SRR16303441ControlmaleControl_male
F3410871.S75SRR16303442ADmaleAD_male
F3410871.S76SRR16303443ADfemaleAD_female
F3410871.S77SRR16303444ADfemaleAD_female
F3410871.S78SRR16303445ControlfemaleControl_female
F3410871.S79SRR16303446ControlmaleControl_male
F3410871.S80SRR16303447ADmaleAD_male
F3410871.S81SRR16303448ADfemaleAD_female
F3410871.S82SRR16303449ADmaleAD_male
F3410871.S83SRR16303450ControlmaleControl_male
F3410871.S84SRR16303451ControlmaleControl_male
F3410871.S85SRR16303452ControlmaleControl_male
F3410871.S86SRR16303461ControlmaleControl_male
F3410871.S87SRR16303472ControlfemaleControl_female
F3410871.S88SRR16303483ControlmaleControl_male
F3410871.S89SRR16303494ControlmaleControl_male
F3410871.S90SRR16303516ControlmaleControl_male
F3410871.S91SRR16303527ControlmaleControl_male
F3410871.S92SRR16303538ControlmaleControl_male
F3410871.S93SRR16303549ControlfemaleControl_female
F3410871.S94SRR16303561ControlmaleControl_male
F3410871.S95SRR16303562ControlmaleControl_male
 
 

ASV Read Counts by Samples

#Sample IDRead Count
F3410871.S101,858
F3410871.S894,099
F3410871.S315,364
F3410871.S445,580
F3410871.S065,733
F3410871.S536,817
F3410871.S938,361
F3410871.S9110,564
F3410871.S4210,943
F3410871.S7411,665
F3410871.S8812,962
F3410871.S9413,249
F3410871.S8513,791
F3410871.S2214,769
F3410871.S8715,041
F3410871.S0715,351
F3410871.S9517,823
F3410871.S1619,676
F3410871.S6420,666
F3410871.S9220,726
F3410871.S1821,019
F3410871.S2021,374
F3410871.S4121,857
F3410871.S9024,597
F3410871.S3627,268
F3410871.S0528,596
F3410871.S0831,557
F3410871.S2832,659
F3410871.S0934,310
F3410871.S0235,032
F3410871.S5435,986
F3410871.S8036,567
F3410871.S0336,779
F3410871.S1437,437
F3410871.S2137,657
F3410871.S3337,946
F3410871.S3839,156
F3410871.S2939,656
F3410871.S4839,981
F3410871.S1940,456
F3410871.S1341,501
F3410871.S5141,649
F3410871.S2441,912
F3410871.S6041,968
F3410871.S5242,553
F3410871.S4544,178
F3410871.S2744,253
F3410871.S1544,345
F3410871.S0444,573
F3410871.S4344,879
F3410871.S4647,064
F3410871.S2347,304
F3410871.S1248,170
F3410871.S4048,590
F3410871.S8348,806
F3410871.S5649,236
F3410871.S5949,254
F3410871.S8149,347
F3410871.S0150,372
F3410871.S3450,403
F3410871.S2551,053
F3410871.S4753,932
F3410871.S3954,590
F3410871.S7255,489
F3410871.S1755,713
F3410871.S6556,409
F3410871.S5056,551
F3410871.S7957,373
F3410871.S5757,613
F3410871.S3058,188
F3410871.S6258,966
F3410871.S3259,144
F3410871.S2659,339
F3410871.S7859,800
F3410871.S6159,947
F3410871.S7162,597
F3410871.S8462,667
F3410871.S7562,841
F3410871.S7062,913
F3410871.S6764,036
F3410871.S7764,300
F3410871.S5564,636
F3410871.S5866,275
F3410871.S3770,122
F3410871.S6672,270
F3410871.S6972,421
F3410871.S7373,561
F3410871.S6876,088
F3410871.S8677,240
F3410871.S3578,394
F3410871.S4983,311
F3410871.S7684,381
F3410871.S1185,253
F3410871.S8298,302
F3410871.S63109,944
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The close-reference taxonomy assignment of the ASV sequences using BLASTN is based on the algorithm published by Al-Hebshi et. al. (2015)[2].

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310a
 
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences - the FOMC 16S rRNA Reference Sequences version 20221029 (https://microbiome.forsyth.org/ftp/refseq/). This set consists of the HOMD (version 15.22 http://www.homd.org/index.php?name=seqDownload&file&type=R ), Mouse Oral Microbiome Database (MOMD version 5.1 https://momd.org/ftp/16S_rRNA_refseq/MOMD_16S_rRNA_RefSeq/V5.1/), and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 full-length 16S rRNA sequences from HOMD V15.22, 356 from MOMD V5.1, and 22,126 from NCBI, a total of 23,497 sequences. Altogether these sequence represent a total of 17,035 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) [3] was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010)[4]. The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:

  1. Al-Hebshi NN, Nasher AT, Idris AM, Chen T. Robust species taxonomy assignment algorithm for 16S rRNA NGS reads: application to oral carcinoma samples. J Oral Microbiol. 2015 Sep 29;7:28934. doi: 10.3402/jom.v7.28934. PMID: 26426306; PMCID: PMC4590409.
  2. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000 Feb-Apr;7(1-2):203-14. doi: 10.1089/10665270050081478. PMID: 10890397.
  3. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.
  4. 3. Designations used in the taxonomy:

    	1) Taxonomy levels are indicated by these prefixes:
    	
    	   k__: domain/kingdom
    	   p__: phylum
    	   c__: class
    	   o__: order
    	   f__: family
    	   g__: genus  
    	   s__: species
    	
    	   Example: 
    	
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
    		
    	2) Unique level identified – known species:
    	   
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
    	
    	   The above example shows some reads match to a single species (all levels are unique)
    	
    	3) Non-unique level identified – known species:
    
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
    	   
    	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
    	   genus Roseburia; the “spp123” is a temporally assigned species ID.
    	
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
    	   
    	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
    	   the “spp234” is a temporally assigned species ID.
    	
    	4) Unique level identified – unknown species, potential novel species:
    	   
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
    	   
    	   The above example indicates that some reads have no match to any of the reference sequences with 
    	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
    	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
    	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
    	   (But they are not the same species).
    	
    	5) Multiple level identified – unknown species, potential novel species:
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
    	
    	   The above example indicates that some reads have no match to any of the reference sequences 
    	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
    	   However this groups of reads (actually the representative read from a de novo  OTU) 
    	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
    	   closest species, instead this group of reads match equally to multiple species at 96%. 
    	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
    	   temporary ID for this potential novel species. 
    

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=414 reads)
ATotal reads4,160,9444,160,944
BTotal assigned reads4,142,4634,142,463
CAssigned reads in species with read count < MPC018,961
DAssigned reads in samples with read count < 50000
ETotal samples9595
FSamples with reads >= 5009595
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)4,142,4634,123,502
IReads assigned to single species1,048,4541,035,416
JReads assigned to multiple species3,081,8713,076,828
KReads assigned to novel species12,13811,258
LTotal number of species411154
MNumber of single species24493
NNumber of multi-species12854
ONumber of novel species397
PTotal unassigned reads18,48118,481
QChimeric reads00
RReads without BLASTN hits2,5092,509
SOthers: short, low quality, singletons, etc.15,97215,972
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyF3410871.S01F3410871.S02F3410871.S03F3410871.S04F3410871.S05F3410871.S06F3410871.S07F3410871.S08F3410871.S09F3410871.S10F3410871.S11F3410871.S12F3410871.S13F3410871.S14F3410871.S15F3410871.S16F3410871.S17F3410871.S18F3410871.S19F3410871.S20F3410871.S21F3410871.S22F3410871.S23F3410871.S24F3410871.S25F3410871.S26F3410871.S27F3410871.S28F3410871.S29F3410871.S30F3410871.S31F3410871.S32F3410871.S33F3410871.S34F3410871.S35F3410871.S36F3410871.S37F3410871.S38F3410871.S39F3410871.S40F3410871.S41F3410871.S42F3410871.S43F3410871.S44F3410871.S45F3410871.S46F3410871.S47F3410871.S48F3410871.S49F3410871.S50F3410871.S51F3410871.S52F3410871.S53F3410871.S54F3410871.S55F3410871.S56F3410871.S57F3410871.S58F3410871.S59F3410871.S60F3410871.S61F3410871.S62F3410871.S63F3410871.S64F3410871.S65F3410871.S66F3410871.S67F3410871.S68F3410871.S69F3410871.S70F3410871.S71F3410871.S72F3410871.S73F3410871.S74F3410871.S75F3410871.S76F3410871.S77F3410871.S78F3410871.S79F3410871.S80F3410871.S81F3410871.S82F3410871.S83F3410871.S84F3410871.S85F3410871.S86F3410871.S87F3410871.S88F3410871.S89F3410871.S90F3410871.S91F3410871.S92F3410871.S93F3410871.S94F3410871.S95
SP1Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;haemolytica0020000000117400000000110000000000000000000000000000000009000000000000000000000000680000000000000000
SP115Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT215120021070060000000130850002520001588647000093000000083662460018591120000141840049001117700620590000100000020119175510700000000006000
SP116Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT2120180150004200132370000000000139363000140000023001101376002000006604103300000045400267045000030000250000201621437300136004701400001300069
SP118Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;matruchotii05894000131038913319179001140111173971990181737503840806659001921524078415481903863882127711185213247103498112101101888371106021410939907714938454051900281159802263631597600265500027003000111
SP127Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;periodonticum048012104441001101393663447402200550008342101611511845019138032025912411504600037312704841041030174001750783075801615853941141800162310085304225934722326200090011929382537042022000742001515
SP133Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;leadbetteri01203300182060026061450038590374000263460049254000604300015132250044090030776917580025300141850381263308636004910341000001036272010136708061655525825012650260000300013
SP142Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;aeria00018700512503943147068837700001919044600013000038920281608324828030652411589006907315123703303210099460026023400198136444317005358928035848000672901100026160010
SP156Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;wadei0000042744452110000000010301234001900045310900005200001000003300810121000005200000004204200320000420005500008000010000000
SP2Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nigrescens060000050000018000062300290011021000500055700034717000000007000000000015000100176093454140000001000180630002000040
SP216Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT3470000000000730000140400000740000000000140013000000000069000000014003700000000320000000490000000000000000000
SP217Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multiformis00000000000000000000000000000000000000000000013290000000000000000000000000000000000000000000000000
SP219Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;durum00088180102044012500590000610000150000005500000580000161480059033001885800004405723700001010624338111007003460010268262300001404000250014
SP220Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oris0019000033207304301432027213263830041015190141000410290376700053854220018400006900000840250090036301630272625252000340000292921511400000031301710
SP224Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;graevenitzii000804002550000280000250139000091528760000748001240000209000600088000000012000018007401290000000000200000763090000900000
SP234Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Weeksellaceae;Weeksellaceae_[G-1];sp. HMT90700000013000000000805900002870011000059000007000000000001597200000000141023000000002400780424658004521790030800000000000
SP235Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;hominis0139835001546010132900004005700049000117600140406131646000232360010621163018246018033011512725160121400190243850542002662501033780002340701010000000
SP239Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;gingivalis0260210009700165964127001600000276200850160040132000155168004313000001554003600003004662093928370050800037015130051643014953771000510120000000000
SP240Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;rava00100000000000300800000000002910009008000010141600000040120000000000590078021150021000000000000960000605030
SP243Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Eikenella;halliae001900000001379000000000014000001070000000023000000000000008600000017100190800000000000144037480000000000000000
SP244Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;denticola50000000001006100000100000000001700000027000000000519000000000000021000080140000000000000000905015000000050
SP25Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Weeksellaceae;Riemerella;sp. HMT32212719662151215621011732834457310012603170366288106266419890149019221501701360901614061271403783392317410111662102457881910039230481515432839710277518003220105021554304230033302510100570000
SP263Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;dispar0940003890122228240302121000140934689267135511714752791520012216501680640037242007651309011814928401178101175720821602465492350000544210786763540001520158038169528462391171245404415743155030902852722017820084616900000122
SP264Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Ottowia;sp. HMT894000000009000000000000000000000000000000000400000000590400003980000000015000000035300000003400000000000
SP268Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;bacilliformis00000001391680000190240000000000240000000002330000000000000110000000000332001410340001099800000000000000000000000
SP270Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parainfluenzae284334974310165015164771521271153104112764822143741287567886451503799650220666676776317521331082079519662333241936387010122575845782068010912016593051633920311200229531236766135422824357500811350152149033405060452363608706320434945379977906817746491433380022410209684610261811221307195712424861154311054102685159716620030251015535
SP276Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;maculosa0000000000000000002000001500000000000388400028000018130000000000000000000200000079000002200008500000000000
SP277Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica63110524403700201010107342340001806582570183504561243243614937101356690204970002882252648571260142013441500002300111131007105011280078376380000322600885947412949281700680339000
SP278Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Dialister;invisus00000000000430150000030000000000000000650004671101302400000000000000000000980016000007000000024180000005000
SP299Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT31700000070001100110060300800030001700012000190009939003000150000000295790000018000000000300461111036000000000200016
SP306Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT17263300003200000000000000570000000291000018700000006009201030021000000000000027700000000154000000000000000000000900
SP311Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oulorum0017000035113000018000160000590000570050000221930002102300121180000000003000004300140000021000160008000045100907000000
SP316Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT473202400000001382015000440100000280000074001470130036290000000001260900000132192000000590500000000000000900180110004031000
SP323Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;mucilaginosa3830943309956034555650622899566573921613791799264023701664053528851807536601440016070495403663072455795612331976207291080343510071132116448502131413750293121630005270270225639774718733001161321780120135200
SP335Bacteria;Firmicutes;Tissierellia;Tissierellales;Peptoniphilaceae;Parvimonas;micra60200000030000007010020000000330002100166100042500016277000000180018003104500000001311000000000500000000000005
SP345Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;sp. HMT01800000000000000000026600000000000000000000000000000017038000554000000000000000000022800000000000001200000
SP357Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Weeksellaceae;Weeksellaceae_[G-1];sp. HMT90000000000008470000005700028700000000000000000000007000000000025050600000000770001450000001200000000000000000
SP358Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Eikenella;corrodens000000000000000000540002927002900000000160000001300046000000000009300000000000014300000460000012800000000000
SP363Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus0000000000000000000000393300000000150000000000000010736601100000018006600000000088006500000117000000000000010
SP369Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;socranskii00000090000000000050300000002500300012230709494163000190000000023000016023000028110000000000000004300000000000
SP370Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;denticola711140000832000020000017100000000410000000135520008170000000000000000000011600002280008000000125000000000060010000
SP378Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;valvarum00000000002100000002200022640000000000001519000000002080005737000002711000000000013000300034150000000300000000014
SP379Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT392041060001111130031217000800880003081271300460000240001152070600160001900001900100000123700000000167012601332568002902002805561650017500000500000
SP386Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudoleptotrichia;goodfellowii000000000000000000000000000000000000140000000000000000000027100000000000180000000000180010300000000000
SP388Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;shahii000000442497120126000035001600000791100210000000003160000000630000060000000470021000008400000007430065013000240000000000
SP391Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Lautropia;mirabilis2230140264852859049945003185037704290001191054026224490020361108025901132462705717207121361299480197208159933412815510800141297949017013241446282518795400002730183900005005
SP404Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pallens0182310000023000049002300015000003146000003100000005000028700000000000013045400740750001400000000003590000000019000
SP410Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sputigena03809009010600050570500001015900026531000331290010215180001037001106000024000156601704201189509407137117027014131082001160132911215195918390001803112001700000
SP412Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;hongkongensis3103135300126980310370019086352440193021103300002500380110434129813840242519647640334929094100160255011073460024125200230480189939262935034337010941300591215000301916000000
SP414Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;histicola005900000228000000090226061945100000029600000050455880013806703468209004701790000014400012223600810127000830002330000000330000000090000
SP415Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Peptidiphaga;sp. HMT1830000001200017000002200010000000800000008546000170190049500000000000000000000000021330000000210037409000000000
SP418Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Lancefieldella;parvula0000000000000340000106220000016210030042003701232000000002300000005005811003008200014000000000073232800000000300
SP419Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Peptidiphaga;gingivicola00618000000000000000000000000000000024300000000003189000780000000000000000000000000030240002400000000004
SP421Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;denticariosi0065000012583120000072023900338008300000013000017440013300000000153271000000000000000001180010900135013400000000891000001100000
SP425Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;shahii00000000000000000000002779000000000160110000000000000810000000000000000000000000400156609000000000000000
SP428Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT41720124073000018080000000120000045700001010003303521063003006342501236829650000000171200093030062113002400003500139640000000000000019
SP44Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudoleptotrichia;sp. HMT22140100015230002620000000553500700152100290000110000122025028124665000060900240000190190000000023230001207000000000003
SP482Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;oralis0117014054266316208200250003937349181246316000110135922100301371310020701815021961218024121009020390017316001528302500018055035063085075010781168704471213140000010
SP484Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT22500000000000700000099000464930044590000690001256800000000054461180380002601118652000005402735800003500729001110000192006000000100
SP489Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudoleptotrichia;sp. HMT21900050000240034800000000000000010000090001503900000000220000241005000103001200000000001250218612040239000000000000000
SP503Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT380000000000000000000000000000000000000000000000000000000000025700000000000000000000000016300000000000
SP505Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Megasphaera;micronuciformis0180000002400004200188019610300012610000056221720007787000215000140000000170016063007701290004819040003510006701300000000000
SP507Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;oralis07002285000205477861652055642502627500004800075144018028621831800015650180943052115026277522448400141619900060235009325500001700000004266091071681420015091500001204500590
SP508Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;gracilis00000001054538500001000146426503427008001150280001663272400416330019405900125210000026180017500000460000905300019494103022010736523007000000
SP512Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;adiacens305963137232112524179322113451948462767913412492833480946723839903283475440164133981651616113742391834424154249149128898161300198134610901040671259612494435020196128588452977151232224364395660100811911919772568533625424717723103427206488602854
SP529Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis01370223119237277394542113228500122325000381000275111000000553091280062700004585610229221835054527076112105085012201644450940418951100136020557650315501092232580291280287048432120411923646117000000
SP589Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;pittmaniae3100520000011001175426047300073031000000000101000000000000017032802200228067503200000000292900000640000000022756100000000000
SP59Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT376000000000000000000000000000000000000000017830000800000000000000031000000000000000000000000000000000
SP594Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT44800000000000000000000000000000000000412000000000000000000000000000000000008100000000000000000000000
SP60Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;tannerae5425000000000025000001581000000001511500500000000045500004140000000000001800168021510516003600001200024000151503900000213493
SP602Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Anaeroglobus;geminatus006000000000015000000000000000000000060000133100001120000000000000000000000000000000000000000000000000
SP604Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;sp. HMT231000000000000000000140000005021000000000000189270002800000000000000012000024120000350016000000010900000000003
SP612Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;sp. HMT917003800000390000000000073000000000000000000321870000000000000000780000002000890000000000000000000000000000
SP620Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;buccalis00042120559450017100130000600000000000000000000000000000000000000001150000000052620001820002372800450000000000000044
SP625Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidales_[F-2];Bacteroidales_[G-2];bacterium HMT274000000000000400000302800040000001000059210009619031300005000040001202300802300000350022001004590619012002000000
SP637Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;noxia000000069610000250000300003300000000000372074000045024037540028614600000000003000000000000000031443043002771100000000010
SP643Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Weeksellaceae;Cloacibacterium;sp. HMT206000000000000001381191612245202431000700035005000045904000000050002080120000003079090024254135353528016431000005550800000000000
SP645Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva8202028218002350067572578713114413005830002932620035843005070531341301138800103605446150014536217027505615192087369150221198400403412603450025512056470011500000305800142170038
SP649Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Stomatobaculum;longum001300000700000000000221300000000000000000013007006000000000090000000140330000000280032600004000000000000
SP656Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;dentocariosa711533041114543190136049268012401048112359933002452381172013113333297548194122881064000194647017900711102187301617701992922348423221150107698250245108200467670680030835339416079643934445554149154218375826523564105900592330102170282453
SP657Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;sp. HMT7801430530000000151000004400000201030000018240711905300127800000000066290000102006612000000651500000400000000067000120000024000
SP667Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;endodontalis0205000120222430015000026019094415000340800000001280100000110302053000000000000600400014000365000060825721019026480360010000000
SP671Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mutans006000095660000000000686000000000000009437907300000000000000000000014005100000000000000000031026002123000000
SP69Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nanceiensis0402500000051903754400000190001600096660060140000007542025046023000000188015000200065249061901200000000296809001900006530015
SP79Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Weeksellaceae;Weeksellaceae_[G-1];sp. HMT93141022000067000000473017190000002833660001574670000000121811000000161560029280080001200140001585201495490555005031512191910912100744782000000000400
SP80Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;granulosa000060626400297000000048902400179001291100004800068708800000000311880158716397080000127800001400788400310570039281802027751001330039000950000
SP88Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;elegans244101180000350049910121186813114652000009428322790970083106916210955002203318000450222000562280523001428279463252154601980923004609890910015210048815308747116014856560143137500620401040340
SP90Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;sp. HMT01200000000000000000000000000000001680000040000000000520007690000000000000009700000000009200000000004200000
SP91Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Actinobacillus;minor00001227000000025380893113721103830286866716904681282341640036320236401453858410072618400000000342914754000008098360499200514932330137194070011185618156236460642043630350046290000055000269100054888
SP92Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-6];bacterium HMT870001800000003100000111000000000000000045000169018100000000000003000010400000081121700000006700000000000000000000
SP94Bacteria;Firmicutes;Clostridia;Eubacteriales;Ruminococcaceae;Ruminococcaceae_[G-1];bacterium HMT0750000061600023700700001300016960016480007001000000038000700001806000297038000000294300000007001930600000000000023
SP95Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum0000000134003111570026000680008105370006800000007875265000000057365670119053040000347600015400000000018692220911014905427516000000000000000
SP97Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._vincentii215000000000000134001260718140000000199000840000000053027900757700000004300540085054300041242008795000000000000150000000000330
SP98Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;salivae6174600012452030000138002000244442700092618610001605400145000461913191959004901770040033007010000162042500542200000014000054167314000010021090
SPN24Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudostreptobacillus;hongkongensis_nov_94.884%0000000000249000000000000000000412000000000000000000000000000000001100117062000000000000000000000000000
SPN25Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;valvarum_nov_94.419%00000000000000000000000000000000000000000000000000047000000000000000021000000000000000000000000000
SPN26Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudoleptotrichia;goodfellowii_nov_93.548%000000000021900000000000000000020900000000000000000000000000000000000000000000000000000000000000000
SPN8Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT338 nov_96.744%0000000000000000000000043000000000000021000000000000022800013700349500000001153812000420000012701600000000000000
SPP100Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;multispecies_spp100_200000000130212600390000000023913400000000510000000091000480559000932000102400559366893730000162296502640000040000024000001700000000
SPP105Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;multispecies_spp105_20210170022620050900000001540006416590171600002100021974002700000424053210330140130351941220030150068001362470183740016542330022600000000030
SPP107Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Schaalia;multispecies_spp107_30000000000000000000000000000000000000200000000000000000000000000000000000000000186000023000000000000
SPP11Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;multispecies_spp11_20000000000000000001470000000000000000048000000000330006347000000000000000000058000000000000000000000000
SPP118Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;multispecies_spp118_200000000000001490000000000000000000000000000000013000000903043000000000000023006100000130000000000000000
SPP122Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp122_300000000248000060160399500000000000000000000000000000000000000000000000000000000000000000000008000000
SPP127Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Erwiniaceae;multigenus;multispecies_spp127_6000000000002500001300040181000000170000170180000000000013151950001580001118000261301702317190016269629020130900000000000
SPP128Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp128_300000000003200000000719000000001120009860000093120259087006213300097000000026000000008500158019061117001850046910700016583467000000000
SPP14Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;multispecies_spp14_30000001200000000000003000205000240000000034700023000000078420000000037000000000000160216003500253100010800000000000
SPP17Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp17_300000000000000000000000000000000000890000000137010200000000010506600249000009300000000000000000000000067000
SPP18Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp18_42754159292764150851521070036902230825173020526603512719095392602397491662223108693671945424395358146732826512661657813971165270900391146719902337751378022260010959928120222038302706712031367013450595622310002531613
SPP19Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;multispecies_spp19_200000401028000013000000000000018000007048530002321000000000000000000000000090000000000080000000000040000
SPP20Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp20_5431898629934024730740052929798116002940528250032752443163539818998010199089113416380595054032107261543178302881892084906853073246214441581992162602170108338113453955218191001222001568125733550384170033000000018
SPP21Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp21_7701245332057627725432955637011407570132305027752024811102234603317423401801875070399347853726312612333801172101194191136263177204503211414730810619212401091051016614466198436015302482644482633715167101013105200456497710046080723
SPP26Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp26_2000000000000000000000000000000007650000000000000000000001221054230980000000000000000000000000007571000000000
SPP28Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;multigenus;multispecies_spp28_6000000000019700000000000013700029000434000000000000000000000000410000000720000000001957009100000000000000019
SPP3Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;multispecies_spp3_5147113266630004751014103595954133592139819712516268039014724251401858236113399107148243679315326034241080412242260358416769416013358348108123014979316405746656563683819925145151567456701104901327051374300457880137651550591132145017381090462801655324104401632813521549739317734652934493671404213114779902758211
SPP30Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;multispecies_spp30_400000000000000000001130000000000037000018800010200000051463000000000000000238000000000006801640000508000003700000
SPP31Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;multispecies_spp31_663200541741020132831052721823101860270326005238180269000022402401600361079430049453021486140475000391236000161922028710031500643500014932215106792200556225042501761390053224561159222780000039
SPP34Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_spp34_4000440004651400000000081000000000000000000000000000000000000000002590155015400800000000000400000000000000
SPP35Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_spp35_6000370037015200000000001303900170052000000000000440780000054000000000455063001040145650395800150000000165000000000002238
SPP36Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Weeksellaceae;multigenus;multispecies_spp36_200000000000011220000000000000000118000000020409300000000145000008841000123023602700000000007000000000000000000000
SPP38Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;multigenus;multispecies_spp38_20000000000000000000000000000000000000000360000000000000000000000000000000000938903190000000000000000
SPP4Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;multispecies_spp4_60000000000000000000000000000000001330000000000413355600002206870000239000000000000000000000000000000000000000
SPP42Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;multispecies_spp42_21222502730018014922493433015455634250100120163918511638158761580192288156188905538206151203380566202477138972004042284908061179134103301621031920011186090108470654080215647345800378121101170132031016370076515112719866840000130122000
SPP44Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_spp44_204214800000800000000001153000000222000002900170222640000000081032000002952000060014701500260000000000000000000000000
SPP46Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_spp46_22895433682204323000035441551110260103170016142451306402313810015502432033742096121104034231005726610711206252510221223316746455028432969820263178122601960241750540032008160000331000129180
SPP47Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_spp47_3009000000000000000000000730000020000000000000000000000000000012800000000000000001170000106009700000000000
SPP49Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;multigenus;multispecies_spp49_2023022212082154700459550391814700017606903624800372020005722632780004350010412370260054440132102072027300453783504406328119748148800660417202300339491111000190700026280110
SPP5Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp5_2000000000000000000000000000000000000000000000000000000000000000000000485100000000000000000000000000
SPP50Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;multispecies_spp50_329396355601617273319860055211823386776178680120303401563247816248157172559002234414496900860684718730601722623880154119886677140102264233287015662132479050159428340412824623905003130175207600262548160757013168790006612340218854
SPP51Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoanaerobaculum;multispecies_spp51_2000000000009000000150000387016210001200005130004001226080300000012000012100005014400211200380233019010014400000000000
SPP54Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;multispecies_spp54_20110260000000001434405511100781550000014600037007226005240000103001488082100000000144000000006410143004320155000000033030931982000000320000
SPP55Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;multispecies_spp55_37495001021736199018429811588200498334130102764403562342341151072989985403714503865058161779133601053081085670422242352625921821255105470703198660003531170289581434421611150465843813001256015219243127012180211291638591602304303800074
SPP57Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp57_40000005500000000000000005010000000000009032300421640000000000000168009650000007513300000000288068500000168000014000000
SPP59Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp59_2004900003734001390000000084087000000000000108385000467454200270000000000000000840000212000950000124709830000088600000000000
SPP6Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp6_18300612791026577253892595689847158558187498132886423194144374648256001010317272164416969899718063125221728475612157348003263171226922899342762345307162188022599489325912236741854639610265001219190734444334520017245681475940046319632052189651082066433278428460155072409717708595429659464233073637198176571751943656341004584044726284372760497562578910851365252412332079989425363178403941254841184123466940429278983222641603189818528101957796833013340
SPP60Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;multispecies_spp60_40267152151708308163406515217864421477290810719280026458978824908110659600397975244200126335059011022692315740267807571252370081774552014017580017650560192640717730393651941351240016044200274217015401691357500043376277017379
SPP63Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_spp63_400032000230016300000000000716700000000000040270000000220000020000000950000000000000000000047000000000000000
SPP69Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;multispecies_spp69_204770015052013100660012378323328200004032436055043130127061002926221525132000910000160000210177012206115600019202600014121531208918678260000005000
SPP7Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;multispecies_spp7_300000000000000000040000000000000410003800000000000000000000000000000006400006340000000000000000000000
SPP70Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;multigenus;multispecies_spp70_412518000346348000014470367040812040273000000000015535100063401010019500081191000100200125204820008330000000014250159548720219600597500025306585181000001260007170000339
SPP73Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;multigenus;multispecies_spp73_511601091388530028254780534494941132063889300103900025931160002959228711443237492331106150072501206426138477023251332872622932213048510117983275534822615570463338430123333612105196981692002256668673296167332715039017952321591047475901547515800104
SPP74Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;multigenus;multispecies_spp74_300000033600000000000246000000014240000094000000000000000000000000000000000000000000001290000000000000000
SPP75Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;multigenus;multispecies_spp75_40000000155000000000000000000000000000004030000000000019304940005900000000000000006580000000000000000000000
SPP76Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;multispecies_spp76_20000004437383900000049001460008774860002726001080002604100001900231373735391465000000150018036000006702900002417807487067000000000000047
SPP77Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Lautropia;multispecies_spp77_2000000075004014000000082900000000000010030000015770023003911401470067020400013300000150007770000000000229000170000780000770000
SPP79Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;multispecies_spp79_414982425011266261652901431047112712412333527171344132232196174431360713169785069417881670775101434215932271464394217271491478410568285664223138208020642542911107751571307164315426031511630121556582165136771001982537054181121677208733714146141275125702174120171763945553188447843539133083401155864102916013618999084637823641157
SPP8Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;multispecies_spp8_20000003400000000000000000000000000000000000000000000892000000000000000000000000006440000000000000000
SPP85Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_spp85_20000000000018000000280001601320000000100000000000000000000000000000024000021000071134001500200280021400000000000
SPP90Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;multispecies_spp90_9000190000003300290000000047000000000000000005300000330000000000031000000001900007400270531670290013300000000000
SPP95Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Schaalia;multispecies_spp95_2060493000007132042102201880790450000647372986351881123000004800801121132300550886900125003601210720058020203942763300355000072001107021014695225033475500253901313
SPP96Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;multispecies_spp96_20000000000000000000000000000000000000000000000000000000000936000000000000000000000000000000000000
SPP97Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Tannerella;multispecies_spp97_2000800561200005000800090520000000000000022000300019000125013000000290000000907000000620100430320096040000000012
SPPN2Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiales Family XVII. Incertae Sedis;Thermaerobacter;multispecies_sppn2_3_nov_75.117%000000000068314036482625383593827435284247284632300504728350395649543902802345373750224549052313927403461368865048515679426552384207038121280417240875186054000000000
SPPN5Bacteria;Proteobacteria;Gammaproteobacteria;Methylococcales;Methylococcaceae;Methylomonas;multispecies_sppn5_2_nov_91.705%000130191402700878883908200000000000310000000000000029042500360000000000005300000004100000000000550000000000000
SPPN6Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;multispecies_sppn6_3_nov_90.741%000000000047093150006000400000000000000230000000000000253000510000000000055000000000000000000000000000
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1Control vs ADPDFSVGPDFSVGPDFSVG
Comparison 2Control_male vs AD_malePDFSVGPDFSVGPDFSVG
Comparison 3Control_female vs AD_femalePDFSVGPDFSVGPDFSVG
Comparison 4Control_male vs Control_femalePDFSVGPDFSVGPDFSVG
Comparison 5AD_male vs AD_femalePDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[5][6] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).

 

References:

  1. Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
  2. Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled [7].


References:

  1. Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes) at the species level.

Printed on each graph is the statistical significance p values of the difference between the groups. The significance is calculated using either Kruskal-Wallis test or the Wilcoxon rank sum test, both are non-parametric methods (since microbiome read count data are considered non-normally distributed) for testing whether samples originate from the same distribution (i.e., no difference between groups). The Kruskal-Wallis test is used to compare three or more independent groups to determine if there are statistically significant differences between their medians. The Wilcoxon Rank Sum test, also known as the Mann-Whitney U test, is used to compare two independent groups to determine if there is a significant difference between their distributions.
The p-value is shown on the top of each graph. A p-value < 0.05 is considered statistically significant between/among the test groups.

 
Alpha Diversity Box Plots for All Groups - Species Level
 
 
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons at Species level
 
Comparison 1Control vs ADView in PDFView in SVG
Comparison 2Control_male vs AD_maleView in PDFView in SVG
Comparison 3Control_female vs AD_femaleView in PDFView in SVG
Comparison 4Control_male vs Control_femaleView in PDFView in SVG
Comparison 5AD_male vs AD_femaleView in PDFView in SVG
 
The above comparisons are at the species-level. Comparisons of other taxonomy levels, from phylum to genus, are also available:
 
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics [8]. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

References:

  1. Plantinga, AM, Wu, MC (2021). Beta Diversity and Distance-Based Analysis of Microbiome Data. In: Datta, S., Guha, S. (eds) Statistical Analysis of Microbiome Data. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-73351-3_5

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together, at the Species level:

 
 
NMDS and PCoA Plots for All Groups - Species Level
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples at the Species level:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons at Species level
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1Control vs ADPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2Control_male vs AD_malePDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3Control_female vs AD_femalePDFSVGPDFSVGPDFSVGPDFSVG
Comparison 4Control_male vs Control_femalePDFSVGPDFSVGPDFSVGPDFSVG
Comparison 5AD_male vs AD_femalePDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information [9].

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used [10]. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificant that a feature/species is differentially abundant.

References:

  1. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.
  2. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.
 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.Control vs AD
Comparison 2.Control_male vs AD_male
Comparison 3.Control_female vs AD_female
Comparison 4.Control_male vs Control_female
Comparison 5.AD_male vs AD_female
 
 

ANCOM-BC2 Differential Abundance Analysis

 

Starting with version V1.2, we include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020) [11]. ANCOM-BC is an updated version of "ANCOM" that:
(a) provides statistically valid test with appropriate p-values,
(b) provides confidence intervals for differential abundance of each taxon,
(c) controls the False Discovery Rate (FDR),
(d) maintains adequate power, and
(e) is computationally simple to implement.

The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

Starting with version V1.43, ANCOM-BC2 is used instead of ANCOM-BC, So that multiple pairwise directional test can be performed (if there are more than two gorups in a comparison). When performing pairwise directional test, the mixed directional false discover rate (mdFDR) is taken into account. The mdFDR is the combination of false discovery rate due to multiple testing, multiple pairwise comparisons, and directional tests within each pairwise comparison. The mdFDR is adopted from (Guo, Sarkar, and Peddada 2010 [12]; Grandhi, Guo, and Peddada 2016 [13]). For more detail explanation and additional features of ANCOM-BC2 please see author's documentation.

References:

  1. Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.
  2. Guo W, Sarkar SK, Peddada SD. Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories. Biometrics. 2010 Jun;66(2):485-92. doi: 10.1111/j.1541-0420.2009.01292.x. Epub 2009 Jul 23. PMID: 19645703; PMCID: PMC2895927.
  3. Grandhi A, Guo W, Peddada SD. A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies. BMC Bioinformatics. 2016 Feb 25;17:104. doi: 10.1186/s12859-016-0937-5. PMID: 26917217; PMCID: PMC4768411.
 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.Control vs AD
Comparison 2.Control_male vs AD_male
Comparison 3.Control_female vs AD_female
Comparison 4.Control_male vs Control_female
Comparison 5.AD_male vs AD_female
 
 
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011) [14]. Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

  1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.
 
Control vs AD
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.Control vs AD
Comparison 2.Control_male vs AD_male
Comparison 3.Control_female vs AD_female
Comparison 4.Control_male vs Control_female
Comparison 5.AD_male vs AD_female
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Control vs ADPDFSVGPDFSVGPDFSVG
Comparison 2Control_male vs AD_malePDFSVGPDFSVGPDFSVG
Comparison 3Control_female vs AD_femalePDFSVGPDFSVGPDFSVG
Comparison 4Control_male vs Control_femalePDFSVGPDFSVGPDFSVG
Comparison 5AD_male vs AD_femalePDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Control vs ADPDFSVGPDFSVGPDFSVG
Comparison 2Control_male vs AD_malePDFSVGPDFSVGPDFSVG
Comparison 3Control_female vs AD_femalePDFSVGPDFSVGPDFSVG
Comparison 4Control_male vs Control_femalePDFSVGPDFSVGPDFSVG
Comparison 5AD_male vs AD_femalePDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Control vs ADPDFSVGPDFSVGPDFSVG
Comparison 2Control_male vs AD_malePDFSVGPDFSVGPDFSVG
Comparison 3Control_female vs AD_femalePDFSVGPDFSVGPDFSVG
Comparison 4Control_male vs Control_femalePDFSVGPDFSVGPDFSVG
Comparison 5AD_male vs AD_femalePDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. We provide the network association result with SparCC (Sparse Correlations for Compositional data)(Friedman & Alm 2012), which is a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.


References:

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.

 

Association Network Inference by SparCC

 

 

 
 

XIII. Disclaimer

The results of this analysis are for research purpose only. They are not intended to diagnose, treat, cure, or prevent any disease. Forsyth and FOMC are not responsible for use of information provided in this report outside the research area.

 

Copyright FOMC 2026