FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.41 fork

Version History

The Forsyth Institute, Cambridge, MA, USA
February 23, 2025

Project ID: Endo_Mycobiome_90_cov


I. Project Summary

Project Endo_Mycobiome_90_cov services do not include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested.

We provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

Not available
 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:
1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

Not available
 

VI. Analysis - DADA2 Read Processing

Not available
 

Sample Meta Information

#SampleIDSample_NameInfectionGroupAgeAge_GroupSexRacePainSwellingSinusDiagnosisPerio_DiagnosisCrowNoPostADJ_PARL
EF1EF1Negative_controlNegative_controlNegative_controlNegative_controlNegative_controlNegative_controlNegative_controlNegative_controlNegative_controlNegative_controlNegative_controlNegative_controlNegative_controlNegative_control
EF2EF2SecondarySecondary5431-60FemaleCaucasianNoNoNoPT_AAPGingivitisYesNoNo
EF3EF3SecondarySecondary2118-30MaleHispanicYesNoNoPT_SAPHealthy_PeriodontiumYesNoYes
EF4EF4PrimaryPrimary1818-30MaleAAYesNoNoPN_SAPNNNoNoNo
EF5EF5PrimaryPrimary4531-60FemaleAsianYesNoNoPN_SAPNNNoNoNo
EF6EF6PrimaryPrimary5031-60FemaleHispanicYesNoNoPN_SAPNNYesNoYes
EF7EF7PrimaryPrimary5031-60FemaleHispanicYesNoNoPN_SAPNNYesNoYes
EF8EF8SecondarySecondary5431-60FemaleAAYesNoNoPT_SAPNNYesNoNo
EF9EF9SecondarySecondary2118-30MaleHispanicYesNoNoPT_SAPHealthy_PeriodontiumYesNoNo
EF10EF10PrimaryPrimary3431-60MaleAAYesNoNoPN_SAPNNNoNoNo
EF11EF11SecondarySecondary2618-30FemaleAAYesNoNoPT_SAPNNNoNoNo
EF12EF12SecondarySecondary64>60MaleCaucasianYesNoNoPT_SAPHealthy_PeriodontiumNoNoNo
EF13EF13PrimaryPrimary3631-60FemaleAsianYesNoNoPN_SAPNNNoNoNo
EF14EF14PrimaryPrimary73>60FemaleHispanicNoNoNoPN_AAPStage_2_Grade_B_PeriodontitisYesNoNo
EF15EF15PrimaryPrimary72>60MaleCaucasianNoNoyesPN_CAAGingivitisNoNoNo
EF16EF16SecondarySecondary68>60MaleAAYesNoNoPI_SAPNNNoNoNo
EF17EF17SecondarySecondary3231-60FemaleAAYesNoNoPT_SAPGingivitisNoNoNo
EF18EF18PrimaryPrimary4231-60MaleAAYesNoNoPN_SAPNNNoNoNo
EF19EF19PrimaryPrimary2118-30MaleCaucasianYesNoNoPN_SAPGingivitisNoNoNo
EF20EF20SecondarySecondary3931-60FemaleAAYesNoNoPT_SAPGingivitisYesNoYes
EF21EF21SecondarySecondary4431-60FemaleAsianNoNoNoPT_NATNNNoNoYes
EF22EF22PrimaryPrimary2718-30MaleHispanicYesNoNoPN_SAPNNNoNoNo
EF23EF23SecondarySecondary63>60MaleAANoNoNoPT_NATStage_4_Grade_C_Periodontitis_localizedNoNoYes
EF24EF24PrimaryPrimary2418-30MaleCaucasianYesNoyesPN_CAAHealthy_PeriodontiumNoNoNo
EF25EF25PrimaryPrimary4631-60FemaleCaucasianYesNoNoPN_SAPNNNoNoNo
EF26EF26PrimaryPrimary3631-60MaleCaucasianYesNoNoPN_SAPNNNoNoNo
EF27EF27PrimaryPrimary4531-60MaleAANoNoNoPN_NATStage_4_Grade_B_Periodontitis_localizedNoNoNo
EF28EF28SecondarySecondary66>60MaleCaucasianYesNoNoPT_SAPNNYesNoNo
EF29EF29PrimaryPrimary5231-60MaleHispanicNoNoNoPN_AAPGingivitisYesNoNo
EF30EF30SecondarySecondary5031-60FemaleCaucasianYesNoNoPT_SAPNNNoNoNo
EF31EF31SecondarySecondary66>60FemaleCaucasianNoNoNoPT_SAPNNYesYesNo
EF32EF32PrimaryPrimary6031-60FemaleAAYesNoNoPN_SAPStage_2_Grade_B_Periodontitis_localizedNoNoNo
EF33EF33PrimaryPrimary3731-60MaleAANoNoNoPN_NATGingivitisNoNoNo
EF34EF34PrimaryPrimary5831-60FemaleCaucasianNoNoyesPN_CAANNNoNoNo
EF35EF35PrimaryPrimary3831-60FemaleAAYesNoNoPN_SAPGingivitisNoNoNo
EF36EF36PrimaryPrimary81>60MaleCaucasianYesNoNoPN_SAPGingivitisNoNoNo
EF37EF37PrimaryPrimary2918-30MaleHispanicYesNoNoPN_SAPNNNoNoNo
EF38EF38PrimaryPrimary2318-30FemaleAAYesNoNoPN_SAPGingivitisNoNoNo
EF39EF39PrimaryPrimary5731-60FemaleHispanicNoNoNoPN_AAPStage_3/4_Grade_B_Periodontitis_localizedNoNoYes
EF40EF40PrimaryPrimary3731-60FemaleAAYesNoNoPN_SAPStage_1_Grade_B_PeriodontitisNoNoNo
EF41EF41SecondarySecondary5631-60FemaleHispanicYesNoNoPT_SAPNNYesYesNo
EF42EF42PrimaryPrimary2518-30MaleHispanicYesNoNoPN_SAPNNNoNoNo
EF43EF43PrimaryPrimary4931-60FemaleAsianNoNoNoPN_AAPStage_3/4_Grade_C_Periodontitis_localizedNoNoNo
EF44EF44SecondarySecondary3531-60MaleHispanicYesNoNoPT_SAPNNYesYesNo
EF45EF45PrimaryPrimary5931-60FemaleAAYesNoNoPN_SAPNNNoNoNo
EF46EF46SecondarySecondary78>60MaleAANoNoNoPT_AAPNNYesYesNo
EF47EF47SecondarySecondary72>60MalecaucasianNoNoNoPT_AAPStage_3/4_Grade_B_Periodontitis_localizedYesYesNo
EF48EF48SecondarySecondary2018-30FemaleAAYesNoNoPT_SAPNNNoNoNo
EF49EF49PrimaryPrimary3331-60FemaleAsianNoNoNoPN_SAPNNNoNoNo
EF50EF50SecondarySecondary3631-60MaleCaucasianYesNoNoPT_SAPGingivitisNoNoNo
EF51EF51PrimaryPrimary4931-60FemaleAsianNoNoNoPN_AAPNNNoNoNo
EF52EF52SecondarySecondary3331-60FemaleHispanicNoNoNoPT_AAPStage_2_Grade_B_Periodontitis_localizedYesYesYes
EF53EF53SecondarySecondary3018-30FemaleAAYesNoNoPT_SAPNNNoNoNo
EF54EF54SecondarySecondary2318-30FemaleHispanicYesNoNoPT_SAPNNYesNoNo
EF55EF55SecondarySecondary2118-30MaleHispanicYesNoNoPT_SAPNNNoNoNo
EF56EF56SecondarySecondary69>60MaleAAYesNoNoPT_SAPNNYesNoNo
EF57EF57SecondarySecondary3331-60MaleHispanicYesNoNoPT_SAPHealthy_PeriodontiumNoNoNo
EF58EF58SecondarySecondary61>60FemaleCaucasianYesNoNoPT_SAPGingivitisNoNoNo
EF59EF59SecondarySecondary64>60FemaleCaucasianYesNoNoPT_SAPNNYesYesNo
EF60EF60SecondarySecondary2018-30FemaleHispanicYesNoyesPT_CAANNYesNoNo
EF61EF61SecondarySecondary3231-60FemaleHispanicYesNoNoPT_SAPNNYesNoNo
EF62EF62Non_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected Control
EF63EF63Non_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected Control
EF64EF64Non_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected ControlNon_infected Control
 
 

ASV Read Counts by Samples

#Sample IDRead Count
EF1137
EF201,174
EF261,260
EF472,339
EF213,960
EF1913,152
EF326,736
EF2830,641
EF4242,223
EF1242,627
EF4843,431
EF2543,900
EF2743,985
EF848,305
EF550,633
EF1351,096
EF653,272
EF454,786
EF5054,799
EF754,965
EF1156,938
EF2359,252
EF2972,075
EF1478,185
EF5178,800
EF980,070
EF2280,970
EF1084,220
EF4588,138
EF31100,266
EF18101,503
EF15103,779
EF54107,769
EF39107,840
EF64111,714
EF2115,432
EF44118,619
EF32121,748
EF30124,057
EF16125,225
EF63126,182
EF41128,558
EF37129,138
EF60131,986
EF17133,017
EF49133,630
EF24133,833
EF33134,077
EF35136,917
EF62138,490
EF34138,921
EF58139,472
EF38143,396
EF59145,577
EF46157,815
EF57161,290
EF56162,164
EF40166,733
EF61174,815
EF53190,610
EF43194,135
EF52215,555
EF36225,469
EF55234,364
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences. It consists of MOMD (version 0.1), the HOMD (version 15.2 http://www.homd.org/index.php?name=seqDownload&file&type=R ), HOMD 16S rRNA RefSeq Extended Version 1.1 (EXT), GreenGene Gold (GG) (http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/gold_strains_gg16S_aligned.fasta.gz) , and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 from HOMD V15.22, 495 from EXT, 3,940 from GG and 18,044 from NCBI, a total of 25,120 sequences. Altogether these sequence represent a total of 15,601 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010). The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.

3. Designations used in the taxonomy:

	1) Taxonomy levels are indicated by these prefixes:
	
	   k__: domain/kingdom
	   p__: phylum
	   c__: class
	   o__: order
	   f__: family
	   g__: genus  
	   s__: species
	
	   Example: 
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
		
	2) Unique level identified – known species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
	
	   The above example shows some reads match to a single species (all levels are unique)
	
	3) Non-unique level identified – known species:

	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
	   
	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
	   genus Roseburia; the “spp123” is a temporally assigned species ID.
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
	   
	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
	   the “spp234” is a temporally assigned species ID.
	
	4) Unique level identified – unknown species, potential novel species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
	   
	   The above example indicates that some reads have no match to any of the reference sequences with 
	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
	   (But they are not the same species).
	
	5) Multiple level identified – unknown species, potential novel species:
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
	
	   The above example indicates that some reads have no match to any of the reference sequences 
	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
	   However this groups of reads (actually the representative read from a de novo  OTU) 
	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
	   closest species, instead this group of reads match equally to multiple species at 96%. 
	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
	   temporary ID for this potential novel species. 

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=540 reads)
ATotal reads6,356,1656,356,165
BTotal assigned reads5,406,0395,406,039
CAssigned reads in species with read count < MPC016,635
DAssigned reads in samples with read count < 500106106
ETotal samples6464
FSamples with reads >= 5006363
GSamples with reads < 50011
HTotal assigned reads used for analysis (B-C-D)5,405,9335,389,298
IReads assigned to single species5,071,5905,062,591
JReads assigned to multiple species39,77939,061
KReads assigned to novel species294,564287,646
LTotal number of species338138
MNumber of single species212100
NNumber of multi-species165
ONumber of novel species11033
PTotal unassigned reads950,126950,126
QChimeric reads1,8791,879
RReads without BLASTN hits3,2693,269
SOthers: short, low quality, singletons, etc.944,978944,978
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyEF1EF10EF11EF12EF13EF14EF15EF16EF17EF18EF19EF2EF20EF21EF22EF23EF24EF25EF26EF27EF28EF29EF3EF30EF31EF32EF33EF34EF35EF36EF37EF38EF39EF4EF40EF41EF42EF43EF44EF45EF46EF47EF48EF49EF5EF50EF51EF52EF53EF54EF55EF56EF57EF58EF59EF6EF60EF61EF62EF63EF64EF7EF8EF9
SP1Fungi;Basidiomycota;Agaricomycetes;Polyporales;Polyporaceae;Trametes;versicolor51859428671108851395016141456313265143713526652054355520279710799226127847177838713143469281395242106219192048850230642782489207520102223641011428844214474917236624379735766139622547273582752212
SP10Fungi;Basidiomycota;Agaricomycetes;Agaricales;Agaricales_fam_Incertae_sedis;Plicaturopsis;crispa02355003448824110011786201010230047660963001544000535304921020102115600400011120201000218548630
SP101Fungi;Basidiomycota;Agaricomycetes;Hymenochaetales;Hymenochaetaceae;Phellinus;gilvus000000000000000000000000000000100000000000000000100000000680000000
SP102Fungi;Basidiomycota;Tremellomycetes;Filobasidiales;Filobasidiaceae;Filobasidium;capsuligenum00007883010000000000000000000000000000000000000000001000000000000000
SP103Fungi;Basidiomycota;Tremellomycetes;Tremellales;Tremellales_fam_Incertae_sedis;Bulleromyces;albus0000025780100700011000000000000000100000000000000000000000000000000
SP105Fungi;Basidiomycota;Agaricomycetes;Hymenochaetales;Schizoporaceae;Hyphodontia;radula0000000000017490000000000100000000000001000000010000000010000000000
SP107Fungi;Basidiomycota;Exobasidiomycetes;Exobasidiomycetidae_ord_Incertae_sedis;Exobasidiomycetidae_fam_Incertae_sedis;Tilletiopsis;lilacina00000000000000000016000000000000000000000000000000000000000000148000
SP108Fungi;Basidiomycota;Tremellomycetes;Tremellales;Tremellales_fam_Incertae_sedis;Cryptococcus;victoriae00000000000395000010000010000200000000000000298000000000000000000010
SP11Fungi;Ascomycota;Saccharomycetes;Saccharomycetales;Saccharomycetales_fam_Incertae_sedis;Debaryomyces;prosopidis00000015101000000042702010001090000000901000000110000001019000000021203445300
SP110Fungi;Basidiomycota;Microbotryomycetes;Sporidiobolales;Sporidiobolales_fam_Incertae_sedis;Sporobolomyces;lactosus00110000744915002020100010140050000001020000000500000000200000000002
SP111Fungi;Basidiomycota;Agaricomycetes;Agaricales;Omphalotaceae;Rhodocollybia;butyracea000000000000000000000000000000000000000000000000000000000007540000
SP113Fungi;Basidiomycota;Agaricomycetes;Agaricales;Marasmiaceae;Henningsomyces;puber000001000000000000000000000000000000000000000000000000000056000000
SP115Fungi;Ascomycota;Eurotiomycetes;Eurotiales;Trichocomaceae;Byssochlamys;spectabilis000000000000000000000789000000000000000000000000000000000000000000
SP116Fungi;Ascomycota;Dothideomycetes;Capnodiales;Davidiellaceae;Cladosporium;grevilleae0271681020151784111600140001020107603804002000000507091101004011021200027
SP117Fungi;Ascomycota;Sordariomycetes;Hypocreales;Nectriaceae;Gibberella;pulicaris000000000100000000000000000642000000000000000000000030020000000000
SP118Fungi;Ascomycota;Eurotiomycetes;Eurotiales;Trichocomaceae;Aspergillus;restrictus000000003100000000000000000010360000000000020005840010024000000009000
SP12Fungi;Ascomycota;Saccharomycetes;Saccharomycetales;Saccharomycetales_fam_Incertae_sedis;Candida;glabrata0010010000000060000200126911164410063160040298400000020000022098910007630120001
SP121Fungi;Basidiomycota;Agaricomycetes;Russulales;Peniophoraceae;Peniophora;incarnata005000000000114501000000004000000000000023000000000100000000000000000
SP125Fungi;Ascomycota;Saccharomycetes;Saccharomycetales;Pichiaceae;Nakazawaea;holstii0000000020000000000000000016160000000040000000000000000100000000001
SP126Fungi;Basidiomycota;Agaricomycetes;Agaricales;Tricholomataceae;Tricholoma;triste000000000000000000000000000000000000000000000000100000000695000000
SP129Fungi;Basidiomycota;Tremellomycetes;Tremellales;Tremellales_fam_Incertae_sedis;Cryptococcus;chernovii00041601610000000000000000000000000000000010000000000000000000000000
SP140Fungi;Ascomycota;Sordariomycetes;Xylariales;Xylariaceae;Nemania;illita0000010000000000000000020000000000000000100000000480201000000100000
SP145Fungi;Ascomycota;Dothideomycetes;Capnodiales;Davidiellaceae;Cladosporium;halotolerans000010011961003243000013038021100100000000020011083501000687100104005696000010
SP15Fungi;Ascomycota;Sordariomycetes;Microascales;Ceratocystidaceae;Huntiella;omanensis0000000000000000000000000000000021420000000000000000010000000000000
SP150Fungi;Ascomycota;Dothideomycetes;Capnodiales;Davidiellaceae;Cladosporium;sphaerospermum00100700000006100003775461001002000015380000000003000001001100000100200000
SP155Fungi;Basidiomycota;Agaricomycetes;Hymenochaetales;Schizoporaceae;Hyphodontia;tropica0000000000000000000000000000000000327200000001000000002000000002010
SP16Fungi;Basidiomycota;Tremellomycetes;Trichosporonales;Trichosporonaceae;Trichosporon;asahii00100035200151802054908801000801014490000030120000000200000451606190000014119410
SP169Fungi;Basidiomycota;Agaricomycetes;Agaricales;Agaricaceae;Tulostoma;fimbriatum000000000000000000000000000000000000000000000000054300000000000000
SP17Fungi;Ascomycota;Dothideomycetes;Capnodiales;Davidiellaceae;Cladosporium;oxysporum0823394010731918161100230377901125505492580020823132181943121211340271247010778116530076831569
SP18Fungi;Basidiomycota;Agaricomycetes;Hymenochaetales;Schizoporaceae;Xylodon;nespori109531100011734211003000001599110000010477072701000124020004316010023200328004000000
SP184Fungi;Ascomycota;Dothideomycetes;Pleosporales;Pleosporaceae;Stemphylium;herbarum000000000069000000000000100000100000000000000000000000001000000000
SP19Fungi;Basidiomycota;Agaricomycetes;Agaricales;Agaricaceae;Lycoperdon;pyriforme000151002000000001000000001000000000000000020000000040000000049901100
SP2Fungi;Basidiomycota;Agaricomycetes;Hymenochaetales;Schizoporaceae;Xylodon;sambuci1000000024320100100011000422010000033482010000030400000040100000010111
SP20Fungi;Basidiomycota;Tremellomycetes;Tremellales;Tremellales_fam_Incertae_sedis;Cryptococcus;albidus5000000000000000010000000011734000000007000001100900000000500000000002
SP21Fungi;Basidiomycota;Tremellomycetes;Tremellales;Tremellales_fam_Incertae_sedis;Cryptococcus;uniguttulatus0000011000000000001270600001010000020050000000000000000021000000000068400
SP22Fungi;Basidiomycota;Agaricomycetes;Hymenochaetales;Schizoporaceae;Schizopora;flavipora00000000000000000080000000000100000000000100000865000120107460000120200
SP25Fungi;Ascomycota;Sordariomycetes;Hypocreales;Nectriaceae;Gibberella;intricans000080001020040000000600000000900000000800006001260000000027966100001673
SP27Fungi;Basidiomycota;Ustilaginomycotina_cls_Incertae_sedis;Malasseziales;Malasseziaceae;Malassezia;slooffiae0020000000000000000000100000100000000200000000475900050002510000000000
SP28Fungi;Ascomycota;Dothideomycetes;Capnodiales;Mycosphaerellaceae;Mycosphaerella;tassiana00151469010039100020300000009700702560001000000000102100053010700202841010020
SP29Fungi;Ascomycota;Dothideomycetes;Capnodiales;Davidiellaceae;Cladosporium;exasperatum42045225479657147412115786651123607276741839152793961522080418897806686912468035122851208379189153331511674527463581174814803977388110547151233162621195344035459169142116772749201244761874932733217352699806
SP3Fungi;Basidiomycota;Ustilaginomycotina_cls_Incertae_sedis;Malasseziales;Malasseziaceae;Malassezia;globosa3125667831681484437620213528333213177594563223135359217132806743465631115615461297412031041422315255114114053292135733035311183132786851435514100820254598301106267478501303236140114955558687943277167005293130716538190416546871572
SP30Fungi;Basidiomycota;Agaricostilbomycetes;Agaricostilbales;Agaricostilbaceae;Sterigmatomyces;halophilus00001804561100000000000000001644000001000000001000000000000000000000010
SP31Fungi;Basidiomycota;Agaricomycetes;Polyporales;Meruliaceae;Phlebia;radiata000000379400002960001100000000000000010000000000000000000000000000200
SP32Fungi;Ascomycota;Sordariomycetes;Hypocreales;Ophiocordycipitaceae;Ophiocordyceps;sinensis150058700011400470000115000071300055107100000040502400000022900000013330000100010020
SP33Fungi;Basidiomycota;Agaricomycetes;Polyporales;Polyporales_fam_Incertae_sedis;Phlebiella;borealis0000002000000000000000001000000061820000000040000010030000000030100
SP34Fungi;Basidiomycota;Agaricomycetes;Polyporales;Polyporaceae;Skeletocutis;chrysella00000000000000000000000000000000000200000004604000003404000000000000
SP35Fungi;Basidiomycota;Agaricomycetes;Polyporales;Meruliaceae;Bjerkandera;adusta000000000000000010001000088250000000000300000756000000002000000003010
SP36Fungi;Ascomycota;Saccharomycetes;Saccharomycetales;Saccharomycetaceae;Saccharomyces;kudriavzevii0001480334480203000136001113103401010459031170931110200006000000005052846000012000000
SP39Fungi;Basidiomycota;Agaricomycetes;Polyporales;Meruliaceae;Irpex;lacteus20112221645580066570021744120101110230700000012100101000000100011613002100100020010117
SP4Fungi;Basidiomycota;Agaricomycetes;Russulales;Stereaceae;Stereum;sanguinolentum1248094399172334064897120411793118301382406524163132350737211529818768913607023034897167117715807231272119337740542790212810112291726708241754595034831
SP40Fungi;Basidiomycota;Ustilaginomycetes;Ustilaginales;Ustilaginaceae;Moesziomyces;rugulosus000046611100000000000000000000000000000000000000000000000550000000000
SP41Fungi;Ascomycota;Sordariomycetes;Hypocreales;Nectriaceae;Gibberella;tricincta00000010000000011000000012018000000050000000020000000020000000030300
SP42Fungi;Basidiomycota;Agaricomycetes;Polyporales;Phanerochaetaceae;Ceriporia;alachuana00000000000001000000031646000000000000000000000000000000001001000000
SP44Fungi;Basidiomycota;Ustilaginomycotina_cls_Incertae_sedis;Malasseziales;Malasseziaceae;Malassezia;sympodialis001890000128101044600002211000209323600210000100184902000001294000001213180699106300000108601525000
SP45Fungi;Basidiomycota;Agaricomycetes;Polyporales;Phanerochaetaceae;Phanerochaete;sordida000000000000000000000080300000000000000000000000200000000000000000
SP46Fungi;Basidiomycota;Agaricomycetes;Agaricales;Pleurotaceae;Pleurotus;pulmonarius00646020100000028020000000033370000018790200001010127000010203119000001010000
SP47Fungi;Basidiomycota;Microbotryomycetes;Sporidiobolales;Sporidiobolales_fam_Incertae_sedis;Rhodotorula;nothofagi0000030000000010000000000000000300000000100000000400000100705700000
SP48Fungi;Basidiomycota;Microbotryomycetes;Sporidiobolales;Sporidiobolales_fam_Incertae_sedis;Sporobolomyces;ruberrimus0069000000000000000000000088600000000000000000000000002000000001000
SP49Fungi;Ascomycota;Sordariomycetes;Hypocreales;Nectriaceae;Fusarium;oxysporum0000000000001000000000000000028680001000010000000030000000040000000
SP5Fungi;Ascomycota;Saccharomycetes;Saccharomycetales;Saccharomycetales_fam_Incertae_sedis;Candida;dubliniensis251071838263354230551123676478142655114386287776318248946063546554841021441020284733192551043815410162423066115184236611415022252228696119262973153227139211747420443155103155168
SP50Fungi;Ascomycota;Dothideomycetes;Dothideales;Dothioraceae;Aureobasidium;microstictum000002050013004439190000000144006104000003402503000002400000005482000200202010
SP51Fungi;Basidiomycota;Microbotryomycetes;Sporidiobolales;Sporidiobolales_fam_Incertae_sedis;Rhodotorula;mucilaginosa0020010084664011800000013006739301006010510000000098000047300210043793030182100028020073800
SP52Fungi;Basidiomycota;Agaricomycetes;Agaricales;Psathyrellaceae;Coprinellus;micaceus0020360000000000000000000000000000000000100000000000000001000000000
SP53Fungi;Ascomycota;Dothideomycetes;Capnodiales;Mycosphaerellaceae;Phaeoramularia;weigelicola0435783245204135740116086182619321756280214427219555240210943435340840001667198753627994778335074977146553485732811097274541221278686618247112028399131146217616515542231448
SP54Fungi;Basidiomycota;Agaricomycetes;Cantharellales;Hydnaceae;Sistotrema;sernanderi013437702590114100302201020010247900001107810102978011010010060142810050135020011014010
SP55Fungi;Basidiomycota;Tremellomycetes;Tremellales;Tremellales_fam_Incertae_sedis;Cryptococcus;diffluens0117032000010010000036001906003001004000002021010027600001516917000003000000001
SP56Fungi;Basidiomycota;Agaricomycetes;Agaricales;Schizophyllaceae;Schizophyllum;commune0000000021370500100000010230000001001010000000013010000000000000000001
SP58Fungi;Basidiomycota;Agaricomycetes;Russulales;Peniophoraceae;Peniophora;laxitexta000000100000000000000000000000000000000000000665000000000000016460000
SP59Fungi;Ascomycota;Saccharomycetes;Saccharomycetales;Saccharomycetales_fam_Incertae_sedis;Candida;tropicalis0000080000000090000000080000001160000000040000000025100008003503200001
SP6Fungi;Basidiomycota;Ustilaginomycotina_cls_Incertae_sedis;Malasseziales;Malasseziaceae;Malassezia;restricta12224220822819037581213418207768605783515742231514237302117267871722644009818829642682786121242764516356898115893504928664178065023637465069814119618328213976051082390331018123186169624622141044489491917834486557751285638322369157449121671799925750305695931838553529180727241
SP60Fungi;Basidiomycota;Agaricomycetes;Auriculariales;Auriculariales_fam_Incertae_sedis;Exidia;nucleata0014040000000000000000100100000112400000000000000000100000000000000000
SP61Fungi;Basidiomycota;Agaricomycetes;Hymenochaetales;Hymenochaetales_fam_Incertae_sedis;Trichaptum;biforme014400002530301110018210030000001141510000100000000000030091601135040000113537010
SP62Fungi;Ascomycota;Dothideomycetes;Pleosporales;Cucurbitariaceae;Pyrenochaetopsis;pratorum0000000100000000100000000000000000300000002000000002000000005633020
SP64Fungi;Basidiomycota;Agaricomycetes;Auriculariales;Auriculariales_fam_Incertae_sedis;Elmerina;caryae00002000000000000000000000000002010180000000000000004000001001009900000
SP68Fungi;Ascomycota;Dothideomycetes;Capnodiales;Capnodiales_fam_Incertae_sedis;Toxicocladosporium;irritans0000000000116720300002101100001101000009304600000051570201000002002000000
SP69Fungi;Ascomycota;Sordariomycetes;Sordariomycetidae_ord_Incertae_sedis;Glomerellaceae;Colletotrichum;fructivorum000000005640100000000000000000000000000000000000000000100000000001
SP7Fungi;Basidiomycota;Agaricomycetes;Polyporales;Fomitopsidaceae;Ischnoderma;resinosum1717925951183884265121201017893881986343255351508279100116514988510112235459969221827193267012226313391786741226311578215333349117750431519546191824525061
SP70Fungi;Basidiomycota;Agaricomycetes;Polyporales;Fomitopsidaceae;Piptoporus;betulinus10000000000000000100000000993001510000000000000000010000000000000000
SP73Fungi;Ascomycota;Saccharomycetes;Saccharomycetales;Debaryomycetaceae;Meyerozyma;caribbica00000000000000000000000009990001260000100000000000000000000000000600
SP74Fungi;Ascomycota;Saccharomycetes;Saccharomycetales;Debaryomycetaceae;Meyerozyma;guilliermondii00000000000000000011000000000000000000000000000000000000000000111800
SP75Fungi;Basidiomycota;Agaricomycetes;Polyporales;Polyporaceae;Trametes;gibbosa00004000000175900011000002010000000046600000007100000000014900108000000000
SP77Fungi;Ascomycota;Dothideomycetes;Capnodiales;Davidiellaceae;Cladosporium;flabelliforme0212102425170688952700250700011011038021120700100001300400082609144093293024491300225
SP78Fungi;Basidiomycota;Agaricomycetes;Cantharellales;Hydnaceae;Sistotrema;brinkmannii0000000001161300201070000020000110050059800000000100000000000000000001000
SP8Fungi;Ascomycota;Dothideomycetes;Pleosporales;Pleosporales_fam_Incertae_sedis;Didymella;glomerata1000000030020000000000000066460000000211000000300000000000000000003
SP80Fungi;Ascomycota;Eurotiomycetes;Eurotiales;Trichocomaceae;Penicillium;chrysogenum0000100000060000000006500010100078183001124000000000004532300092331000207000000
SP81Fungi;Ascomycota;Dothideomycetes;Pleosporales;Pleosporaceae;Curvularia;intermedia00000000000000242900000000200000001000000004000011000100000000000000
SP82Fungi;Ascomycota;Eurotiomycetes;Eurotiales;Trichocomaceae;Paecilomyces;fulvus0001183000000000000000000000000000000000000000000000000000020000000
SP83Fungi;Ascomycota;Eurotiomycetes;Eurotiales;Trichocomaceae;Talaromyces;dendriticus00010001167400000000002000000000117800000100000002000010002000020002000
SP85Fungi;Ascomycota;Dothideomycetes;Pleosporales;Montagnulaceae;Paraphaeosphaeria;michotii1003000016090000000000000030020000001010000000200000000100000000002
SP86Fungi;Basidiomycota;Agaricomycetes;Agaricales;Strophariaceae;Hypholoma;lateritium000100000010500000000000000000040001000030000000220000000076240000000
SP87Fungi;Basidiomycota;Tremellomycetes;Trichosporonales;Trichosporonaceae;Trichosporon;mycotoxinovorans0000000000000000000000000000000000000000000000000100000000130500000
SP89Fungi;Ascomycota;Sordariomycetes;Hypocreales;Hypocreales_fam_Incertae_sedis;Trichothecium;crotocinigenum0000004665000000000100000000000000010000000000000000000000000000100
SP9Fungi;Ascomycota;Saccharomycetes;Saccharomycetales;Saccharomycetales_fam_Incertae_sedis;Candida;albicans231168563471754223381128631446848724519813806950519024144628812214653199853555923272981996306717345336470121100822092173295213410960131856109974902725136320181352981147043319628592452010978113883241152935297181257111156
SP90Fungi;Basidiomycota;Agaricomycetes;Polyporales;Polyporaceae;Daedaleopsis;confragosa000000000005660000000000300002000000000000000001000000000001000000
SP91Fungi;Ascomycota;Dothideomycetes;Pleosporales;Pleosporales_fam_Incertae_sedis;Periconia;pseudobyssoides00001000000001000000020000000067270000000010000000030030000003100000
SP92Fungi;Basidiomycota;Agaricomycetes;Polyporales;Fomitopsidaceae;Postia;sericeomollis0200000000000000001000000001000000001000000001000000021720000000000
SP93Fungi;Basidiomycota;Agaricomycetes;Agaricales;Mycenaceae;Panellus;serotinus00509000000003140000003000071676000100100510000000002000000112000000101123890
SP95Fungi;Basidiomycota;Agaricomycetes;Hymenochaetales;Hymenochaetaceae;Phellinus;robiniae000000000000000000000000776000000000000000000000000010000000000000
SP96Fungi;Basidiomycota;Tremellomycetes;Holtermanniales;Holtermanniales_fam_Incertae_sedis;Holtermanniella;takashimae000000000000000273900000000000000002000000002000000001000675000030000
SP98Fungi;Basidiomycota;Agaricomycetes;Hymenochaetales;Hymenochaetaceae;Phellinus;johnsonianus000000000000000000000000000000000000200000595000000000000000000000
SPN102Fungi;Basidiomycota;Agaricomycetes;Polyporales;Meripilaceae;Grifola;frondosa_nov_98.000%010000000000000000001000000001000532002000000005000000069420000100000
SPN11Fungi;Basidiomycota;Ustilaginomycotina_cls_Incertae_sedis;Malasseziales;Malasseziaceae;Malassezia;globosa_nov_97.135%00012003600661089001557101030151761030940000190000192000000000100147925010702361000001321000010
SPN2Fungi;Basidiomycota;Agaricomycetes;Russulales;Bondarzewiaceae;Amylosporus;bracei_nov_90.789%0002000000000000000000000000010001000030000000110000000052710000000
SPN21Fungi;Basidiomycota;Agaricomycetes;Russulales;Stereaceae;Stereum;sanguinolentum_nov_98.288%028694000020261000000010002000000603952000000000000020000010000100000200
SPN22Fungi;Basidiomycota;Ustilaginomycotina_cls_Incertae_sedis;Malasseziales;Malasseziaceae;Malassezia;restricta_nov_97.326%198126422044612083237539786913164232832434923523402269828356562078241972907010206725601864021051359611502835001291115450310335928985218710911211007733104431314143872
SPN29Fungi;Basidiomycota;Tremellomycetes;Filobasidiales;Filobasidiaceae;Filobasidium;capsuligenum_nov_85.583%0100000001020000000000000001000000003260000000000000000000000000000
SPN32Fungi;Basidiomycota;Agaricomycetes;Polyporales;Meruliaceae;Merulius;tremellosus_nov_97.885%000064295000101133000000000030019630903000000000000000002000000000000000000
SPN36Fungi;Basidiomycota;Agaricomycetes;Agaricales;Mycenaceae;Mycena;metata_nov_97.419%0000100000000000000003088000000000000000000000000000000000000000000
SPN37Fungi;Basidiomycota;Agaricomycetes;Cantharellales;Hydnaceae;Sistotrema;coronilla_nov_79.641%0001000000000000000000000000000000000000000000010000000030240000000
SPN38Fungi;Basidiomycota;Microbotryomycetes;Sporidiobolales;Sporidiobolales_fam_Incertae_sedis;Sporobolomyces;poonsookiae_nov_95.833%000116416741150000000000000000000000001000000000000000000000000020000000
SPN39Fungi;Basidiomycota;Ustilaginomycotina_cls_Incertae_sedis;Malasseziales;Malasseziaceae;Malassezia;restricta_nov_98.396%08620480000410073000000304928607601494610111000018000144010000021020000230001900006802
SPN40Fungi;Basidiomycota;Microbotryomycetes;Sporidiobolales;Sporidiobolales_fam_Incertae_sedis;Rhodosporidium;fluviale_nov_94.333%010000000100000000100000000200000000235000000000000245000010000000000
SPN41Fungi;Basidiomycota;Tremellomycetes;Cystofilobasidiales;Cystofilobasidiaceae;Udeniomyces;pyricola_nov_98.489%010000000210635600000000001000000100000000000000001000000011000000000
SPN42Fungi;Basidiomycota;Ustilaginomycotina_cls_Incertae_sedis;Malasseziales;Malasseziaceae;Malassezia;caprae_nov_82.143%00110313000838126437011534100262711357005540234421253306210145851890303100235424371128011858306142110161198106200201116011551
SPN44Fungi;Basidiomycota;Agaricomycetes;Polyporales;Meruliaceae;Merulius;tremellosus_nov_94.595%00000000000000009200000000000002364000000001000000001009000000000000
SPN45Fungi;Basidiomycota;Agaricomycetes;Russulales;Stereaceae;Stereum;hirsutum_nov_94.983%0000000000100000000875368100000000000000000000009720000000000001000000
SPN46Fungi;Basidiomycota;Agaricomycetes;Polyporales;Meruliaceae;Gloeoporus;pannocinctus_nov_87.847%00176001403000000000000045900000000000000000000000000000000000000200000
SPN47Fungi;Basidiomycota;Agaricomycetes;Polyporales;Meruliaceae;Irpex;lacteus_nov_98.333%0001241912302900000000010000000000000000000000000100002700100000000001487
SPN48Fungi;Basidiomycota;Microbotryomycetes;Sporidiobolales;Sporidiobolales_fam_Incertae_sedis;Sporobolomyces;symmetricus_nov_92.053%0000000000000000100000000159100000000000000000000000001000000000000
SPN49Fungi;Basidiomycota;Agaricomycetes;Hymenochaetales;Schizoporaceae;Hyphodontia;floccosa_nov_82.595%0000000000000000000000001277000000000000000000000000000000000000100
SPN50Fungi;Basidiomycota;Agaricomycetes;Agaricales;Mycenaceae;Mycena;rubromarginata_nov_94.156%00094702570000000000000000000000000000000010000000010000000010000000
SPN51Fungi;Basidiomycota;Ustilaginomycotina_cls_Incertae_sedis;Malasseziales;Malasseziaceae;Malassezia;restricta_nov_97.587%000602053315501001550080000501284012810600094002013000010007000023038357000000012552
SPN52Fungi;Basidiomycota;Agaricomycetes;Hymenochaetales;Schizoporaceae;Hyphodontia;arguta_nov_86.984%010000000000000000000000000956000000000000000000000000000000000000
SPN53Fungi;Basidiomycota;Ustilaginomycotina_cls_Incertae_sedis;Malasseziales;Malasseziaceae;Malassezia;globosa_nov_96.606%00428072163119493374437008029213500271302376125700690204000017500434760133251077021510742316758973170296046290248992957241346180
SPN55Fungi;Basidiomycota;Ustilaginomycotina_cls_Incertae_sedis;Malasseziales;Malasseziaceae;Malassezia;restricta_nov_92.643%00000000000000000000000000000521000000001000000000000000000000000425
SPN56Fungi;Basidiomycota;Agaricostilbomycetes;Agaricostilbales;Agaricostilbaceae;Bensingtonia;ingoldii_nov_81.982%00000000081010200000000000000000000000000000000000000000000000000000
SPN57Fungi;Basidiomycota;Wallemiomycetes;Wallemiales;Wallemiaceae;Wallemia;muriae_nov_96.350%0000000000000071800000008000000000100000000000000000300000000000000
SPN58Fungi;Basidiomycota;Agaricomycetes;Cantharellales;Hydnaceae;Sistotrema;coroniferum_nov_90.994%000000000000000000000000075700000000000000000000000000000000000000
SPN59Fungi;Basidiomycota;Agaricomycetes;Russulales;Stereaceae;Stereum;hirsutum_nov_95.987%0000000016666600000000000000000000000000000000000000000000000000000
SPN63Fungi;Basidiomycota;Ustilaginomycotina_cls_Incertae_sedis;Malasseziales;Malasseziaceae;Malassezia;restricta_nov_96.783%001342187615733027025300312003543100147106387370330420006879950366018132006680002121017105311078276411001340168388698017113
SPN74Fungi;Basidiomycota;Ustilaginomycotina_cls_Incertae_sedis;Malasseziales;Malasseziaceae;Malassezia;restricta_nov_97.826%0001612437350601325044900140100222550001129131020102125618439186090261681310500403011411013472853653256250206167137674043143
SPN83Fungi;Basidiomycota;Agaricomycetes;Cantharellales;Hydnaceae;Sistotrema;brinkmannii_nov_94.949%00114006020050000234000000916810934350000690000024590000000000002002020000000020000
SPN92Fungi;Basidiomycota;Agaricomycetes;Hymenochaetales;Hymenochaetaceae;Tubulicrinis;hirtellus_nov_77.193%120000000000120000200100000448300000000000300029894000000020000000002594
SPP1Fungi;Basidiomycota;Tremellomycetes;Tremellales;Tremellales_fam_Incertae_sedis;Cryptococcus;multispecies_spp1_20000000000000000000000000000001000000000000011230001000000000000000
SPP14Fungi;Ascomycota;Dothideomycetes;Pleosporales;Pleosporaceae;Alternaria;multispecies_spp14_200000000101225500011710020700000306901000000100030003000000160300010000001730
SPP15Fungi;Ascomycota;Dothideomycetes;Pleosporales;Pleosporaceae;Alternaria;multispecies_spp15_200000000000000001000033620002000700000851306541030000205000000002000005
SPP16Fungi;Basidiomycota;Tremellomycetes;multiorder;multifamily;multigenus;multispecies_spp16_200092501330100000000010000010000000486700029010002044000000400600300101320010
SPP7Fungi;Ascomycota;Sordariomycetes;Hypocreales;Nectriaceae;Fusarium;multispecies_spp7_230000000176102160060002000011800800000060200000001000000000400000000002
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1Secondary vs Primary vs Non_infected ControlPDFSVGPDFSVGPDFSVG
Comparison 231-60 vs 18-30 vs >60PDFSVGPDFSVGPDFSVG
Comparison 3Female vs MalePDFSVGPDFSVGPDFSVG
Comparison 4Caucasian vs Hispanic vs AA vs AsianPDFSVGPDFSVGPDFSVG
Comparison 5No vs YesPDFSVGPDFSVGPDFSVG
Comparison 6No vs yesPDFSVGPDFSVGPDFSVG
Comparison 7PT_AAP vs PT_SAP vs PN_SAP vs PN_AAP vs PN_CAA vs PI_SAP vs PT_NAT vs PN_NAT vs PT_CAAPDFSVGPDFSVGPDFSVG
Comparison 9Yes vs NoPDFSVGPDFSVGPDFSVG
Comparison 10No vs YesPDFSVGPDFSVGPDFSVG
Comparison 11No vs YesPDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[1][2] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).


References:
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled.


References:
Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons
 
Comparison 1Secondary vs Primary vs Non_infected ControlView in PDFView in SVG
Comparison 231-60 vs 18-30 vs >60View in PDFView in SVG
Comparison 3Female vs MaleView in PDFView in SVG
Comparison 4Caucasian vs Hispanic vs AA vs AsianView in PDFView in SVG
Comparison 5No vs YesView in PDFView in SVG
Comparison 6No vs yesView in PDFView in SVG
Comparison 7PT_AAP vs PT_SAP vs PN_SAP vs PN_AAP vs PN_CAA vs PI_SAP vs PT_NAT vs PN_NAT vs PT_CAAView in PDFView in SVG
Comparison 8Gingivitis vs Healthy_Periodontium vs NN vs Stage_2_Grade_B_Periodontitis vs Stage_4_Grade_C_Periodontitis_localized vs Stage_4_Grade_B_Periodontitis_localized vs Stage_2_Grade_B_Periodontitis_localized vs Stage_3/4_Grade_B_Periodontitis_localized vs Stage_1_Grade_B_Periodontitis vs Stage_3/4_Grade_C_Periodontitis_localizedView in PDFView in SVG
Comparison 9Yes vs NoView in PDFView in SVG
Comparison 10No vs YesView in PDFView in SVG
Comparison 11No vs YesView in PDFView in SVG
 
 
 

Group Significance of Alpha-diversity Indices

To test whether the alpha diversity among different comparison groups are different statisticall, we use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 diversity package. Kruskal Wallis H test is the non parametric alternative to the One Way ANOVA. Non parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (like the assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.Secondary vs Primary vs Non_infected ControlObserved FeaturesShannon IndexSimpson Index
Comparison 2.31-60 vs 18-30 vs >60Observed FeaturesShannon IndexSimpson Index
Comparison 3.Female vs MaleObserved FeaturesShannon IndexSimpson Index
Comparison 4.Caucasian vs Hispanic vs AA vs AsianObserved FeaturesShannon IndexSimpson Index
Comparison 5.No vs YesObserved FeaturesShannon IndexSimpson Index
Comparison 6.No vs yesObserved FeaturesShannon IndexSimpson Index
Comparison 7.PT_AAP vs PT_SAP vs PN_SAP vs PN_AAP vs PN_CAA vs PI_SAP vs PT_NAT vs PN_NAT vs PT_CAAObserved FeaturesShannon IndexSimpson Index
Comparison 8.Gingivitis vs Healthy_Periodontium vs NN vs Stage_2_Grade_B_Periodontitis vs Stage_4_Grade_C_Periodontitis_localized vs Stage_4_Grade_B_Periodontitis_localized vs Stage_2_Grade_B_Periodontitis_localized vs Stage_3/4_Grade_B_Periodontitis_localized vs Stage_1_Grade_B_Periodontitis vs Stage_3/4_Grade_C_Periodontitis_localizedObserved FeaturesShannon IndexSimpson Index
Comparison 9.Yes vs NoObserved FeaturesShannon IndexSimpson Index
Comparison 10.No vs YesObserved FeaturesShannon IndexSimpson Index
Comparison 11.No vs YesObserved FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1Secondary vs Primary vs Non_infected ControlPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 231-60 vs 18-30 vs >60PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3Female vs MalePDFSVGPDFSVGPDFSVGPDFSVG
Comparison 4Caucasian vs Hispanic vs AA vs AsianPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 5No vs YesPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 6No vs yesPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 7PT_AAP vs PT_SAP vs PN_SAP vs PN_AAP vs PN_CAA vs PI_SAP vs PT_NAT vs PN_NAT vs PT_CAAPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 9Yes vs NoPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 10No vs YesPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 11No vs YesPDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) chosen s the group significan testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.Secondary vs Primary vs Non_infected ControlBray–CurtisCorrelationAitchison
Comparison 2.31-60 vs 18-30 vs >60Bray–CurtisCorrelationAitchison
Comparison 3.Female vs MaleBray–CurtisCorrelationAitchison
Comparison 4.Caucasian vs Hispanic vs AA vs AsianBray–CurtisCorrelationAitchison
Comparison 5.No vs YesBray–CurtisCorrelationAitchison
Comparison 6.No vs yesBray–CurtisCorrelationAitchison
Comparison 7.PT_AAP vs PT_SAP vs PN_SAP vs PN_AAP vs PN_CAA vs PI_SAP vs PT_NAT vs PN_NAT vs PT_CAABray–CurtisCorrelationAitchison
Comparison 8.Gingivitis vs Healthy_Periodontium vs NN vs Stage_2_Grade_B_Periodontitis vs Stage_4_Grade_C_Periodontitis_localized vs Stage_4_Grade_B_Periodontitis_localized vs Stage_2_Grade_B_Periodontitis_localized vs Stage_3/4_Grade_B_Periodontitis_localized vs Stage_1_Grade_B_Periodontitis vs Stage_3/4_Grade_C_Periodontitis_localizedBray–CurtisCorrelationAitchison
Comparison 9.Yes vs NoBray–CurtisCorrelationAitchison
Comparison 10.No vs YesBray–CurtisCorrelationAitchison
Comparison 11.No vs YesBray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information (http://www.compositionaldata.com/).

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificane that a feature/species is differentially abundant.


References:

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.

Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.Secondary vs Primary vs Non_infected Control
Comparison 2.31-60 vs 18-30 vs >60
Comparison 3.Female vs Male
Comparison 4.Caucasian vs Hispanic vs AA vs Asian
Comparison 5.No vs Yes
Comparison 6.No vs yes
Comparison 7.PT_AAP vs PT_SAP vs PN_SAP vs PN_AAP vs PN_CAA vs PI_SAP vs PT_NAT vs PN_NAT vs PT_CAA
Comparison 8.Gingivitis vs Healthy_Periodontium vs NN vs Stage_2_Grade_B_Periodontitis vs Stage_4_Grade_C_Periodontitis_localized vs Stage_4_Grade_B_Periodontitis_localized vs Stage_2_Grade_B_Periodontitis_localized vs Stage_3/4_Grade_B_Periodontitis_localized vs Stage_1_Grade_B_Periodontitis vs Stage_3/4_Grade_C_Periodontitis_localized
Comparison 9.Yes vs No
Comparison 10.No vs Yes
Comparison 11.No vs Yes
 
 

ANCOM-BC Differential Abundance Analysis

 

Starting with version V1.2, we also include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020). ANCOM-BC is an updated version of "ANCOM" that: (a) provides statistically valid test with appropriate p-values, (b) provides confidence intervals for differential abundance of each taxon, (c) controls the False Discovery Rate (FDR), (d) maintains adequate power, and (e) is computationally simple to implement. The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

References:

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.Secondary vs Primary vs Non_infected Control
Comparison 2.31-60 vs 18-30 vs >60
Comparison 3.Female vs Male
Comparison 4.Caucasian vs Hispanic vs AA vs Asian
Comparison 5.No vs Yes
Comparison 6.No vs yes
Comparison 7.PT_AAP vs PT_SAP vs PN_SAP vs PN_AAP vs PN_CAA vs PI_SAP vs PT_NAT vs PN_NAT vs PT_CAA
Comparison 9.Yes vs No
Comparison 10.No vs Yes
Comparison 11.No vs Yes
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011). Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.

 
Secondary vs Primary vs Non_infected Control
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.Secondary vs Primary vs Non_infected Control
Comparison 2.31-60 vs 18-30 vs >60
Comparison 3.Female vs Male
Comparison 4.Caucasian vs Hispanic vs AA vs Asian
Comparison 5.No vs Yes
Comparison 6.No vs yes
Comparison 7.PT_AAP vs PT_SAP vs PN_SAP vs PN_AAP vs PN_CAA vs PI_SAP vs PT_NAT vs PN_NAT vs PT_CAA
Comparison 8.Gingivitis vs Healthy_Periodontium vs NN vs Stage_2_Grade_B_Periodontitis vs Stage_4_Grade_C_Periodontitis_localized vs Stage_4_Grade_B_Periodontitis_localized vs Stage_2_Grade_B_Periodontitis_localized vs Stage_3/4_Grade_B_Periodontitis_localized vs Stage_1_Grade_B_Periodontitis vs Stage_3/4_Grade_C_Periodontitis_localized
Comparison 9.Yes vs No
Comparison 10.No vs Yes
Comparison 11.No vs Yes
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Secondary vs Primary vs Non_infected ControlPDFSVGPDFSVGPDFSVG
Comparison 231-60 vs 18-30 vs >60PDFSVGPDFSVGPDFSVG
Comparison 3Female vs MalePDFSVGPDFSVGPDFSVG
Comparison 4Caucasian vs Hispanic vs AA vs AsianPDFSVGPDFSVGPDFSVG
Comparison 5No vs YesPDFSVGPDFSVGPDFSVG
Comparison 6No vs yesPDFSVGPDFSVGPDFSVG
Comparison 7PT_AAP vs PT_SAP vs PN_SAP vs PN_AAP vs PN_CAA vs PI_SAP vs PT_NAT vs PN_NAT vs PT_CAAPDFSVGPDFSVGPDFSVG
Comparison 9Yes vs NoPDFSVGPDFSVGPDFSVG
Comparison 10No vs YesPDFSVGPDFSVGPDFSVG
Comparison 11No vs YesPDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Secondary vs Primary vs Non_infected ControlPDFSVGPDFSVGPDFSVG
Comparison 231-60 vs 18-30 vs >60PDFSVGPDFSVGPDFSVG
Comparison 3Female vs MalePDFSVGPDFSVGPDFSVG
Comparison 4Caucasian vs Hispanic vs AA vs AsianPDFSVGPDFSVGPDFSVG
Comparison 5No vs YesPDFSVGPDFSVGPDFSVG
Comparison 6No vs yesPDFSVGPDFSVGPDFSVG
Comparison 7PT_AAP vs PT_SAP vs PN_SAP vs PN_AAP vs PN_CAA vs PI_SAP vs PT_NAT vs PN_NAT vs PT_CAAPDFSVGPDFSVGPDFSVG
Comparison 9Yes vs NoPDFSVGPDFSVGPDFSVG
Comparison 10No vs YesPDFSVGPDFSVGPDFSVG
Comparison 11No vs YesPDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Secondary vs Primary vs Non_infected ControlPDFSVGPDFSVGPDFSVG
Comparison 231-60 vs 18-30 vs >60PDFSVGPDFSVGPDFSVG
Comparison 3Female vs MalePDFSVGPDFSVGPDFSVG
Comparison 4Caucasian vs Hispanic vs AA vs AsianPDFSVGPDFSVGPDFSVG
Comparison 5No vs YesPDFSVGPDFSVGPDFSVG
Comparison 6No vs yesPDFSVGPDFSVGPDFSVG
Comparison 7PT_AAP vs PT_SAP vs PN_SAP vs PN_AAP vs PN_CAA vs PI_SAP vs PT_NAT vs PN_NAT vs PT_CAAPDFSVGPDFSVGPDFSVG
Comparison 9Yes vs NoPDFSVGPDFSVGPDFSVG
Comparison 10No vs YesPDFSVGPDFSVGPDFSVG
Comparison 11No vs YesPDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015). SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012), which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.


References:

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.

 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

Copyright FOMC 2025